Ir al contenido

Documat


Continuous Wong–Zakai Approximations of Random Attractors for Quasi-linear Equations with Nonlinear Noise

  • Autores: Yangrong Li, Shuang Yang, Qiangheng Zhang
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00423-z
  • Enlaces
  • Resumen
    • We consider a family of random quasi-linear equations driven by nonlinear Wong–Zakai noise and parameterized by the non-zero size λ of noise. After proving the existence of a random attractor Aλ(ω) in the square Lebesgue space, we then show that there is a residual dense subset of the space of nonzero real numbers such that, under the Hausdorff metric, the map λ→Aλ(θsω) is continuous at all points of the residual dense set, where θs is a group of self-transformations on the probability space. We also prove that as λ→±∞ the random attractor converges upper-semicontinuously to the global attractor of the deterministic quasi-linear equation. The upper semi-continuity result is new for nonlinear noise, while, the lower semi-continuity result is new even for linear noise. The theory of Baire category is the main tool used to prove the residual continuity.

  • Referencias bibliográficas
    • 1. Aida, S., Sasaki, K.: Wong–Zakai approximation of solutions to reflecting stochastic differential equations on domains in Euclidean spaces....
    • 2. Arrieta, J.M., Carvalho, A.N., Langa, J.A.: Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations....
    • 3. Bates, P.W., Lu, K., Wang, B.: Random attractors for stochastic reaction–diffusion equations on unbounded domains. J. Differ. Equ. 246,...
    • 4. Brzezniak, Z., Manna, U., Mukherjee, D.: Wong–Zakai approximation for the stochastic Landau– Lifshitz–Gilbert equations. J. Differ. Equ....
    • 5. Caraballo, T., Carvalho, A.N., Da Costa, H.B.: Equi-attraction and continuity of attractors for skewproduct semiflows. Discrete Contin....
    • 6. Cui, H., Langa, J.A., Li, Y.: Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems. J. Dyn....
    • 7. Cui, H., Kloeden, P.E., Wu, F.: Pathwise upper semi-continuity of random pullback attractors along the time axis. Physica D 374, 21–34...
    • 8. Fernandez-Martinez, M., Guirao, J.L.G., Vera Lopez, J.A.: Fractal dimension for IFS-attractors revisited. Qual. Theory Dyn. Syst. 17(3),...
    • 9. Flandoli, F., Gubinelli, M., Priola, E.: Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180, 1–53 (2010)
    • 10. Freitas, M.M., Kalita, P., Langa, J.A.: Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations. J....
    • 11. Gess, B.: Random attractors for singular stochastic evolution equations. J. Differ. Equ. 255, 524–559 (2013)
    • 12. Gess, B.: Random attractors for degenerate stochastic partial differential equations. J. Dyn. Differ. Equ. 25, 121–157 (2013)
    • 13. Gu, A.: Asymptotic behavior of random lattice dynamical systems and their Wong–Zakai approximations. Discrete Contin. Dyn. Syst. B 24,...
    • 14. Gu, A., Lu, K., Wang, B.: Asymptotic behavior of random Navier–Stokes equations driven by Wong– Zakai approximations. Discrete Cont. Dyn....
    • 15. Han, X., Kloeden, P.E., Usman, B.: Upper semi-continuous convergence of attractors for a Hopfieldtype lattice model. Nonlinearity 33,...
    • 16. Hoang, L.T., Olson, E.J., Robinson, J.C.: On the continuity of global attractors. Proc. Am. Math. Soc. 143, 4389–4395 (2015)
    • 17. Hoang, L.T., Olson, E.J., Robinson, J.C.: Continuity of pullback and uniform attractors. J. Differ. Equ. 264, 4067–4093 (2018)
    • 18. Kloeden, P.E., Simsen, J.: Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents....
    • 19. Kloeden, P.E., Simsen, J., Simsen, M.S.: Asymptotically autonomous multivalued cauchy problems with spatially variable exponents. J. Math....
    • 20. Krause, A., Lewis, M., Wang, B.: Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise. Appl. Math....
    • 21. Langa, J.A., Robinson, J.C., Suarez, A.: The stability of attractors for non-autonomous perturbations of gradient-like systems. J. Differ....
    • 22. Li, F.Z., Li, Y.R., Wang, R.H.: Regular measurable dynamics for reaction–diffusion equations on narrow domains with rough noise. Discrete...
    • 23. Li, F.Z., Li, Y.R., Wang, R.H.: Limiting dynamics for stochastic reaction–diffusion equations on the Sobolev space with thin domains....
    • 24. Li, Y.N., Yang, Z.J., Da, F.: Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping....
    • 25. Li, Y.R., Gu, A., Li, J.: Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian...
    • 26. Li, Y.R., Li, F.Z.: Limiting dynamics for stochastic FitzHugh-Nagumo equations on large domains. Stoch. Dyn. 19, 2019 (2019)
    • 27. Li, Y.R., She, L.B., Wang, R.H.: Asymptotically autonomous dynamics for parabolic equations. J. Math. Anal. Appl. 459, 1106–1123 (2018)
    • 28. Li, Y.R., Yin, J.Y.: Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations. Discrete...
    • 29. Liu, L.F., Fu, X.: Existence and upper semicontinuity of (L-2, L-q) pullback attractors for a stochastic p-Laplacian equation. Commun....
    • 30. Lu, K., Wang, B.: Wong–Zakai approximations and long term behavior of stochastic partial differential equations. J. Dyn. Differ. Equ....
    • 31. Manna, U., Mukherjee, D., Panda, A.A.: Wong–Zakai approximation for the stochastic Landau– Lifshitz–Gilbert equations with anisotropy...
    • 32. Novruzov, E., Hagverdiyev, A.: On long-time dynamics of the solution of doubly nonlinear equation. Qual. Theory Dyn. Syst. 15, 127–155...
    • 33. Robinson, J.C.: Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces. Nonlinearity 22, 753–746 (2009)
    • 34. Robinson, J.C.: Stability of random attractors under perturbation and approximation. J. Differ. Equ. 186, 652–669 (2002)
    • 35. Wang, B.: Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete Contin. Dyn. Syst. 34, 269–300...
    • 36. Wang, F., Li, J., Li, Y.: Random attractors for Ginzburg–Landau equations driven by difference noise of a Wiener-like process. Adv. Differ....
    • 37. Wang, R., Shi, L., Wang, B.: Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on RN...
    • 38. Wang, S., Li, Y.: Longtime robustness of pullback random attractors for stochastic magnetohydrodynamics equations. Physica D 382, 46–57...
    • 39. Wang, S., Li, Y.: Probabilistic continuity of a pullback random attractor in time-sample. Discrete Contin. Dyn. Syst. B 25, 2699–2722...
    • 40. Wang, X., Lu, K., Wang, B.: Wong–Zakai approximations and attractors for stochastic reaction– diffusion equations on unbounded domains....
    • 41. Wang, X., Lu, K., Wang, B.: Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing....
    • 42. Wong, E., Zakai, M.: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat. 36, 1560–1564 (1965)
    • 43. Yin, J., Li, Y.: Two types of upper semi-continuity of bi-spatial attractors for non-autonomous stochastic p-Laplacian equations on R-n....
    • 44. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)
    • 45. Zaj, M., Ghane, F.H.: Non-hyperbolic solenoidal thick Bony attractors. Qual. Theory Dyn. Syst. 18, 35–55 (2019)
    • 46. Zhao, W.: Random dynamics of stochastic p-Laplacian equations on R-N with an unbounded additive noise. J. Math. Anal. Appl. 455, 1178–1203...
    • 47. Zhao, W., Zhang, Y., Chen, S.: Higher-order Wong–Zakai approximations of stochastic reaction– diffusion equations on R-N. Physica D 401,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno