Ir al contenido

Documat


Promoting Social Media Dissemination of Digital Images Through CBR-Based Tag Recommendation

  • Lucía Martín-Gómez [1] ; Javier Pérez-Marcos [1] ; Rebeca Cordero-Gutiérrez [1] ; Daniel H. de la Iglesia [1] Árbol académico
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

  • Localización: IJIMAI, ISSN-e 1989-1660, Vol. 7, Nº. 6, 2022 (Ejemplar dedicado a: Special Issue on New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence), págs. 45-53
  • Idioma: inglés
  • DOI: 10.9781/ijimai.2022.09.002
  • Enlaces
  • Resumen
    • Multimedia content has become an essential tool to share knowledge, sell products or disseminate messages. Some social networks use multimedia content to promote information and create social communities. In order to increase the impact of the digital content, those images or videos are labeled with different words, denominated tags. In this paper, we propose a recommender system which analyzes multimedia content and suggests tags to maximize its influence in the social community. It implements a Case-Based Reasoning architecture (CBR), which allows to learn from previous tagged content. The system has been evaluated through cross fold validation with a training and validation sets carefully constructed and extracted from Instagram. The results demonstrate that the system can suggest good options to label our image and maximize the influence of the multimedia content.

  • Referencias bibliográficas
    • Statista, “Number of monthly active instagram users from january 2013 to december 2021,” 2022. Available: https: //www.statista.com/statistics/253577/...
    • S. Sood, S. Owsley, K. J. Hammond, L. Birnbaum, “Tagassist: Automatic tag suggestion for blog posts.,” in ICWSM, 2007.
    • M. Sohn, S. Jeong, J. Kim, H. J. Lee, “Augmented context-based recommendation service framework using knowledge over the linked open data...
    • W. Chen, Z. Li, “A study of tag-based recipe recommendations for users in different age groups,” in International Symposium on Emerging Technologies...
    • D. Eck, P. Lamere, T. Bertin-Mahieux, S. Green, “Automatic generation of social tags for music recommendation,” in Advances in neural information...
    • O. Celma, “Music recommendation,” in Music recommendation and discovery, Springer, 2010, pp. 43– 85.
    • J.-H. Su, H.-H. Yeh, S. Y. Philip, V. S. Tseng, “Music recommendation using content and context information mining,” IEEE Intelligent Systems,...
    • A. Van den Oord, S. Dieleman, B. Schrauwen, “Deep content-based music recommendation,” in Advances in neural information processing systems,...
    • X. Wang, Y. Wang, “Improving content-based and hybrid music recommendation using deep learning,”in Proceedings of the 22nd ACM international...
    • Y. Choi, J. Kim, E. Yun, S. Lee, D. Kim, “A new image search and retrieval system using text and visual features,” in WebNet World Conference...
    • J.-W. Huang, C.-Y. Tseng, M.-C. Chen, M.-S. Chen, “Pisar: Progressive image search and recommendation system by auto-interpretation and user...
    • M. De Gemmis, P. Lops, G. Semeraro, P. Basile, “Integrating tags in a semantic content-based recommender,” in Proceedings of the 2008 ACM...
    • P. Lopez-de Arenosa, B. Díaz-Agudo, J. A. Recio- García, “Cbr tagging of emotions from facial expressions,” in International Conference on...
    • S. Craw, B. Horsburgh, S. Massie, “Music recommendation: audio neighbourhoods to discover music in the long tail,” in International Conference...
    • S. Nasiri, J. Zenkert, M. Fathi, “A medical case-based reasoning approach using image classification and text information for recommendation,”...
    • M. B. Chawki, E. Nauer, N. Jay, J. Lieber, “Tetra: A case- based decision support system for assisting nuclear physicians with image interpretation,”...
    • D. López-Sánchez, J. M. Corchado, A. G. Arrieta, “A cbr system for imagebased webpage classification: Case representation with convolutional...
    • M. Wang, B. Ni, X.-S. Hua, T.-S. Chua, “Assistive tagging: A survey of multimedia tagging with human- computer joint exploration,” ACM Computing...
    • J. Li, J. Z. Wang, “Real-time computerized annotation of pictures,” IEEE transactions on pattern analysis and machine intelligence, vol....
    • X. Li, C. G. Snoek, M. Worring, “Learning tag relevance by neighbor voting for social image retrieval,” in Proceedings of the 1st ACM international...
    • H. T. Nguyen, M. Wistuba, L. Schmidt-Thieme, “Personalized tag recommendation for images using deep transfer learning,” in Joint European...
    • R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, G. Stumme, “Tag recommendations in folksonomies,” in European conference on principles...
    • A. Hotho, R. Jäschke, C. Schmitz, G. Stumme, “Folkrank: A ranking algorithm for folksonomies,” 2006.
    • S. Lindstaedt, R. Mörzinger, R. Sorschag, V. Pammer, G. Thallinger, “Automatic image annotation using visual content and folksonomies,” Multimedia...
    • S. Lee, W. De Neve, K. N. Plataniotis, Y. M. Ro, “Map-based image tag recommendation using a visual folksonomy,” Pattern Recognition Letters,...
    • E. Amador-Domínguez, E. Serrano, D. Manrique, J. Bajo, “A casebased reasoning model powered by deep learning for radiology report recommendation,”...
    • M. Benamina, B. Atmani, S. Benbelkacem, “Diabetes diagnosis by casebased reasoning and fuzzy logic,” IJIMAI, vol. 5, no. 3, pp. 72–80, 2018....
    • O. R. Zaíane, “Building a recommender agent for e- learning systems,” in Computers in education, 2002. proceedings. international conference...
    • D. G. Lowe, “Distinctive image features from scale- invariant keypoints,” International journal of computer vision, vol. 60, no. 2, pp. 91–110,...
    • H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, “Speeded- up robust features (surf),” Computer vision and image understanding, vol. 110, no....
    • E. Rublee, V. Rabaud, K. Konolige, G. Bradski, “Orb: An efficient alternative to sift or surf,” in Computer Vision (ICCV), 2011 IEEE international...
    • J. Yang, Y.-G. Jiang, A. G. Hauptmann, C.-W. Ngo, “Evaluating bag-ofvisual-words representations in scene classification,” in Proceedings...
    • R. Chakravarti, X. Meng, “A study of color histogram based image retrieval,” in Information Technology: New Generations, 2009. ITNG’09. Sixth...
    • M. Hassan, C. Bhagvati, “Evaluation of image quality assessment metrics: Color quantization noise,” Evaluation, vol. 9, no. 1, 2015.
    • L. Torrey, J. Shavlik, “Transfer learning,” in Handbook of research on machine learning applications and trends: algorithms, methods, and...
    • S. Kim, J.-Y. Jiang, M. Nakada, J. Han, W. Wang, “Multimodal post attentive profiling for influencer marketing,” in Proceedings of The Web...
    • C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the...
    • E. Hoffer, N. Ailon, “Deep metric learning using triplet network,” in International workshop on similarity-based pattern recognition, 2015,...
    • I. Melekhov, J. Kannala, E. Rahtu, “Siamese network features for image matching,” 2016 23rd International Conference on Pattern Recognition...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno