Ir al contenido

Documat


A Case-Based Reasoning Model Powered by Deep Learning for Radiology Report Recommendation

  • Elvira Amador-Domínguez [1] ; Emilio Serrano [1] ; Daniel Manrique [1] ; Javier Bajo [1]
    1. [1] Universidad Politécnica de Madrid

      Universidad Politécnica de Madrid

      Madrid, España

  • Localización: IJIMAI, ISSN-e 1989-1660, Vol. 7, Nº. 2, 2021, págs. 15-26
  • Idioma: inglés
  • DOI: 10.9781/ijimai.2021.08.011
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Case-Based Reasoning models are one of the most used reasoning paradigms in expert-knowledge-driven areas. One of the most prominent fields of use of these systems is the medical sector, where explainable models are required. However, these models are considerably reliant on user input and the introduction of relevant curated data. Deep learning approaches offer an analogous solution, where user input is not required. This paper proposes a hybrid Case-Based Reasoning, Deep Learning framework for medical-related applications, focusing on the generation of medical reports. The proposal combines the explainability and user-focused approach of case-based reasoning models with the deep learning techniques performance. Moreover, the framework is fully modular to fit a wide variety of tasks and data, such as real-time sensor captured data, images, or text, to name a few. An implementation of the proposed framework focusing on radiology report generation assistance is provided. This implementation is used to evaluate the proposal, showing that it can provide meaningful and accurate corrections, even when the amount of information available is minimal.

      Additional tests on the optimization degree of the case base are also performed, evidencing how the proposed framework can optimize this base to achieve optimal performance.

  • Referencias bibliográficas
    • Z. Gu, J. Cheng, H. Fu, K. Zhou, H. Hao, Y. Zhao,T. Zhang, S. Gao, J. Liu, “Ce-net: Context encoder network for 2d medical image segmentation,”...
    • D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. D. Lange, P. Halvorsen, H. D. Johansen, “Resunet++: An advanced architecture...
    • D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, H. D. Johansen, “Kvasir-seg: A segmented polyp dataset,” in...
    • A. Avetisyan, M. Dahnert, A. Dai, M. Savva, A. X. Chang, M. Niessner, “Scan2cad: Learning cad model alignment in rgb-d scans,” in Proceedings...
    • B. Yang, S. Wang, A. Markham, N. Trigoni, “Robust attentional aggregation of deep feature sets for multi-view 3d reconstruction,” International...
    • J. Liu, Z. Zhang, N. Razavian, “Deep ehr: Chronic disease prediction using medical notes,” in Proceedings of the 3rd Machine Learning for...
    • S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. Guerrero, B. Glocker, D. Rueckert, “Disease prediction using graph convolutional networks:...
    • J. Kolodner, Case-Based Reasoning. San Francisco, California, USA: Morgan Kaufmann Publishers Inc., 1993.
    • M. M. Richter, R. O. Weber, Case-Based Reasoning: A Textbook. New York City, New York, USA: Springer Publishing Company, Incorporated, 2013.
    • G. Costa Silva, E. E. O. Carvalho, W. M. Caminhas, “An artificial immune systems approach to Case-based Reasoning applied to fault detection...
    • F. Torrent-Fontbona, J. Massana, B. López, “Case-base maintenance of a personalised and adaptive CBR bolus insulin recommender system for...
    • E. Amador-Domínguez, E. Serrano, D. Manrique, J. F. D. Paz, “Prediction and decision-making in intelligent environments supported by knowledge...
    • “Ai4eu.” https://www.ai4eu.eu/. Accessed: 2020-12-21.
    • “The ai4eu scientific vision.” https://www.ai4eu.eu/ai4eu-scientificvision. Accessed: 2020-12-21.
    • “Ai4eu.” https://www.ai4eu.eu/resource/raidologist. Accessed: 2020-12-21.
    • M. B. Bentaiba-Lagrid, L. Bouzar-Benlabiod, S. H. Rubin, T. BouabanaTebibel, M. R. Hanini, “A case-based reasoning system for supervised classification...
    • D. Brown, A. Aldea, R. Harrison, C. Martin, I. Bayley, “Temporal casebased reasoning for type 1 diabetes mellitus bolus insulin decision support,”...
    • E. Lupiani, J. M. Juarez, J. Palma, R. Marin, “Monitoring elderly people at home with temporal Case-Based Reasoning,” Knowledge-Based Systems,...
    • A. Aamodt, E. Plaza, “Case-based reasoning: Foundational issues, methodological variations, and system approaches,” AI Commun., vol. 7, p....
    • Y. Qin, W. Lu, Q. Qi, X. Liu, M. Huang, P. J. Scott, X. Jiang, “Towards an ontology-supported case-based reasoning approach for computer-aided...
    • J. Daengdej, D. Lukose, R. Murison, “Using statistical models and casebased reasoning in claims prediction: experience from a real-world problem,”...
    • S. Nasiri, G. Zahedi, S. Kuntz, M. Fathi, “Knowledge representation and management based on an ontological CBR system for dementia caregiving,”...
    • F. Marie, L. Corbat, Y. Chaussy, T. Delavelle, J. Henriet, J.-C. Lapayre, “Segmentation of deformed kidneys and nephroblastoma using CaseBased...
    • L. Corbat, M. Nauval, J. Henriet, J.-C. Lapayre, “A fusion method based on Deep Learning and Case-Based Reasoning which improves the resulting medical...
    • J.-B. Lamy, B. Sekar, G. Guezennec, J. Bouaud, B. Séroussi, “Explainable artificial intelligence for breast cancer: A visual case-based reasoning...
    • V. Tang, K. Choy, G. Ho, H. Lam, Y. Tsang, “An iomt-based geriatric care management system for achieving smart health in nursing homes,” Industrial...
    • S. Massie, G. Forbes, S. Craw, L. Fraser, G. Hamilton, “Fitsense: Employing multi-modal sensors in smart homes to predict falls,” Lecture...
    • G. Forbes, “Employing multi-modal sensors for personalised smart home health monitoring,” vol. 2567, 2019, pp. 185–190.
    • G. Mujtaba, L. Shuib, N. Idris, W. L. Hoo, R. G. Raj, K. Khowaja, K. Shaikh, H. F. Nweke, “Clinical text classification research trends: Systematic...
    • J. T. Oliva, J. L. G. Rosa, “Classification for EEG report generation and epilepsy detection,” Neurocomputing, vol. 335, pp. 81 – 95, 2019,...
    • S. Baccianella, A. Esuli, F. Sebastiani, “Variable-constraint classification and quantification of radiology reports under the ACR Index,”...
    • A. Dudchenko, M. Ganzinger, G. Kopanitsa, “Diagnoses Detection in Short Snippets of Narrative Medical Texts,” Procedia Computer Science, vol....
    • J. Prada, Y. Gala, A. Sierra, “Covid-19 mortality risk prediction using x-ray images,” International Journal of Interactive Multimedia and...
    • K. Negi, A. Pavuri, L. Patel, C. Jain, “A novel method for drug-adverse event extraction using machine learning,” Informatics in Medicine...
    • “Detection of unexpected findings in radiology reports: A comparative study of machine learning approaches,” vol. 160, p. 113647, 2020, doi:...
    • T. F. d. Toledo, H. D. Lee, N. Spolaôr, C. S. R. Coy, F. C. Wu, “Web System Prototype based on speech recognition to construct medical reports...
    • L. F. Donnelly, R. Grzeszczuk, C. V. Guimaraes, W. Zhang, G. S. B. III, “Using a Natural Language Processing and Machine Learning Algorithm...
    • H. Bay, T. Tuytelaars, L. Van Gool, “Surf: Speeded up robust features,” in Computer Vision – ECCV 2006, Berlin, Heidelberg, Germany, 2006,...
    • E. Rublee, V. Rabaud, K. Konolige, G. Bradski, “Orb: An efficient alternative to sift or surf,” in Proceedings of the 2011 International Conference...
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, “Distributed representations of words and phrases and their compositionality,”...
    • J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings...
    • M. Kusner, Y. Sun, N. Kolkin, K. Weinberger, “From word embeddings to document distances,” vol. 37 of Proceedings of Machine Learning Research,...
    • W. Boag, E. Sergeeva, S. Kulshreshtha, P. Szolovits, A. Rumshisky, T. Naumann, “Cliner 2.0: Accessible and accurate clinical concept extraction,”...
    • J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, J. Kang, “BioBERT: a pre-trained biomedical language representation model for biomedical...
    • I. Beltagy, K. Lo, A. Cohan, “SciBERT: A pretrained language model for scientific text,” in Proceedings of the 2019 Conference on Empirical...
    • A. E. W. Johnson, T. J. Pollard, S. J. Berkowitz, N. R. Greenbaum, M. P. Lungren, C.-y. Deng, R. G. Mark, S. Horng, “Mimic-cxr, a de-identified...
    • D. Demner-Fushman, S. Antani, M. Simpson, G. R. Thoma, “Design and development of a multimodal biomedical information retrieval system,” Journal...
    • V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, Feb....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno