Ir al contenido

Documat


Data-Driven Modeling Through the Moodle Learning Management System: An Empirical Study Based on a Mathematics Teaching Subject

  • Adrián Pérez-Suay [1] ; Steven Van Vaerenbergh [2] ; Pascual D. Diago [1] ; Ana B. Pascual-Venteo [1] ; Francesc J. Ferri [1]
    1. [1] Universitat de València

      Universitat de València

      Valencia, España

    2. [2] Universidad de Cantabria

      Universidad de Cantabria

      Santander, España

  • Localización: Revista Iberoamericana de Tecnologías del Aprendizaje: IEEE-RITA, ISSN 1932-8540, Vol. 18, Nº. 1, 2023, págs. 19-27
  • Idioma: inglés
  • DOI: 10.1109/RITA.2023.3250434
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This work addresses the problem of inferring student performance from information acquired in a Learning Management System (LMS). In particular, we explore the capabilities offered by Moodle, a widely used LMS. The study is performed on data acquired from four classes within the same subject, for whom we make inferences about student performance marks. The developed methodology describes the degree in which the acquired information allows to predict the student marks belonging to the continuous evaluation, while the prediction of the final students marks has a higher intrinsic complexity that would require a more in- depth study of the relevant variables. Then, we follow a fully data-driven process to discover similarities among classes. In particular, we propose the use of a dependence estimation measure, the normalized Hilbert-Schmidt Independence criterion. We show how this dependence measure is useful to determine relations among classes, based on their particular teaching methodology, by only using data acquired from the LMS. This opens the door to explore the capabilities of LMS in similarity search between offered courses along an educational platform. In order to help the community and serve as a common way of comparison, we provide the source code of the proposed methodology.

  • Referencias bibliográficas
    • V. A. García, M. G. de Prado, B. R. Bravo, F. J. G. Peñalvo, and A. C. Almuzara, “Guía de recomendaciones para la evaluación online de las...
    • L. M. A. Zohair, “Prediction of student’s performance by modelling small dataset size,” Int. J. Educ. Technol. Higher Educ., vol. 16, no....
    • A. B. Vega, C. R. Morales, and R. C. Menéndez, “Aplicando minería de datos para descubrir rutas de aprendizaje frecuentes en moodle,” Edmetic,...
    • A. Almasri, R. S. Alkhawaldeh, and E. Çelebi, “Clustering-based EMT model for predicting student performance,” Arabian J. Sci. Eng., vol....
    • R. Asif, A. Merceron, S. A. Ali, and N. G. Haider, “Analyzing undergraduate students’ performance using educational data mining,” Comput....
    • C. R. Baker, “Joint measures and cross-covariance operators,” Trans. Amer. Math. Soc., vol. 186, pp. 273–289, Dec. 1973.
    • J. Bravo-Agapito, S. J. Romero, and S. Pamplona, “Early prediction of undergraduate student’s academic performance in completely online learning:...
    • C. Cortes, M. Mohri, and A. Rostamizadeh, “Algorithms for learning kernels based on centered alignment,” J. Mach. Learn. Res., vol. 13, no....
    • P. Cortez and A. Silva, “Using data mining to predict secondary school student performance,” in Proc. 5th FUture Bus. Technol. Conf., A....
    • H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support vector regression machines,” in Proc. Adv. Neural Inf. Process. Syst.,...
    • K. Fukumizu, F. R. Bach, and M. I. Jordan, “Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces,” J....
    • D. Garcia-Saiz and M. Zorrilla, “Comparing classification methods for predicting distance students performance,” in Proc. 2nd Workshop Appl....
    • A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring statistical dependence with Hilbert–Schmidt norms,” in Algorithmic Learning...
    • A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schölkopf, “Kernel methods for measuring independence,” J. Mach. Learn. Res., vol....
    • F. D. Guillén-Gámez and I. Garca-Magario, “A technique for designing glossary activities with facial authentication,” J. E-Learn. Knowl....
    • T. Lerche and E. Kiel, “Predicting student achievement in learning management systems by log data analysis,” Comput. Hum. Behav., vol. 89,...
    • J. López-Zambrano, J. A. Lara, and C. Romero, “Towards portability of models for predicting students’ final performance in university courses...
    • K. Pearson, “On lines and planes of closest fit to systems of points in space,” Philos. Mag., vol. 2, no. 6, pp. 559–572, 1901.
    • A. Pérez-Suay and G. Camps-Valls, “Sensitivity maps of the Hilbert–Schmidt independence criterion,” Appl. Soft Comput., vol. 70, pp. 1054–1063,...
    • A. Rivas, A. González-Briones, G. Hernández, J. Prieto, and P. Chamoso, “Artificial neural network analysis of the academic performance of...
    • C. Romero and S. Ventura, “Educational data mining and learning analytics: An updated survey,” WIREs Data Mining Knowl. Discovery, vol. 10,...
    • C. Romero, M. I. López, J. M. Luna, and S. Ventura, “Predicting students’ final performance from participation in on-line discussion forums,”...
    • B. Schölkopf, R. Herbrich, and J. A. Smola, “A generalized representer theorem,” in Computational Learning Theory, D. Helmbold and B. Williamson,...
    • B. Scholkopf and J. A. Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA, USA:...
    • Y.-T. Sung, K.-E. Chang, and T.-C. Liu, “The effects of integrating mobile devices with teaching and learning on students’ learning performance:...
    • D. T. Tempelaar, B. Rienties, and Q. Nguyen, “Towards actionable learning analytics using dispositions,” IEEE Trans. Learn. Technol., vol....
    • S. Theodoridis, “Learning in parametric modeling: Basic concepts and directions,” in Machine Learning, S. Theodoridis, Ed., 2nd ed. New York,...
    • D. Turnbull, R. Chugh, and J. Luck, “Learning management systems: An overview,” in Encyclopedia of Education and Information Technologies,...
    • S. V. Vaerenbergh and A. Pérez-Suay, “A classification of artificial intelligence systems for mathematics education,” in Mathematics Education...
    • H. M. Vo, C. Zhu, and N. A. Diep, “The effect of blended learning on student performance at course-level in higher education: A metaanalysis,”...
    • F. Yang and F. W. B. Li, “Study on student performance estimation, student progress analysis, and student potential prediction based on data...
    • M. Zorrilla and D. García-Saiz, “A service oriented architecture to provide data mining services for non-expert data miners,” Decis. Support...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno