Oviedo, España
Cordoba, España
En este artículo, aplicamos técnicas de minería de datos para descubrir rutas de aprendizaje frecuentes. Hemos utilizado datos de 84 estudiantes universitarios, seguidos en un curso online usando Moodle 2.0. Proponemos agrupar a los estudiantes, en primer lugar, a partir de los datos de una síntesis de uso de Moodle y/o las calificaciones finales de los alumnos en un curso. Luego, usamos los datos de los logs de Moodle sobre cada cluster/grupo de estudiantes separadamente con el fin de poder obtener más específicos y precisos modelos de procesos del comportamiento de los estudiantes.
In this paper, we apply techniques data mining to discover common learning routes. We have used data from 84 undergraduate college students who followed an online course using Moodle 2.0. We propose to group students firstly starting from data about Moodle’s usage summary and/or the students’ final marks in the course. Then, we use data from Moodle’s logs about each cluster/group of students separately in order to be able to obtain more specific and accurate process models of students’ behaviour.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados