Ir al contenido

Documat


Existence and Stability Results for Nonlinear Implicit Random Fractional Integro-Differential Equations

  • Sumbel Shahid [1] ; Shahid Saifullah [1] ; Usman Riaz [2] ; Akbar Zada [1] ; Sana Ben Moussa [3]
    1. [1] University of Peshawar

      University of Peshawar

      Pakistán

    2. [2] Qurtuba University of Science and Information Technology

      Qurtuba University of Science and Information Technology

      Pakistán

    3. [3] King Khalid University

      King Khalid University

      Arabia Saudí

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this typescript, we present nonlinear implicit random fractional integro-differential equation in mean square sense and its corresponding coupled system. For the existence, uniqueness and at least one solution of the said nonlinear equation, we use Banach contraction and Schauder fixed point theorems, respectively. Uniqueness and at least one solution of corresponding coupled form of the proposed nonlinear system will be prove through Banach contraction theorem and Arzela–Ascoli theorem, respectively. ` Under some hypothesis, we scrutinize Hyers–Ulam stability of the mentioned nonlinear equation and its corresponding coupled nonlinear system. For the support of our main results, we present examples.

  • Referencias bibliográficas
    • 1. Alam, M., Shah, D.: Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives....
    • 2. Alam, M., Zada, A., Riaz, U.: On a coupled impulsive fractional integrodifferential system with Hadamard derivatives. Qual. Theory Dyn....
    • 3. Begum, S., Zada, A., Saifullah, S., Popa, I.L.: Dynamical behaviour of random fractional integrodifferential equation via Hilfer fractional...
    • 4. Belmora, S., Ravichandran, C., Jarad, F.: Nonlinear generalized fractional differential equations with generalized fractional integral...
    • 5. Burgos, C.: Mean square calculus and random linear fractional differential equations, theory and applications. Appl. Math. Nonlinear Sci....
    • 6. Burgos, C., Cortés, J.C., Villafuerte, L., Villanueva, R.J.: Solving random mean square fractional linear differential equations by generalized...
    • 7. Diethelm, K.: The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics (2010)
    • 8. Dong, L.S., Noa, H.V., Vu, H.: Existence and Ulam stabiity for random fractional integro-differential equation. Afr. Mat. 31, 1283–1294...
    • 9. El-Sayed, A.M.A., Elasddad, E.E., Madkour, H.F.A.: On Cauchy problem of a delay stochastic differential equation of arbitrary (fractional)...
    • 10. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
    • 11. Guo, Y., Shu, X.B., Li, Y., Xu, F.: The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral...
    • 12. Hafiz, F.M.: The fractional calculus for some stochastic processes. Stoch. Anal. Appl. 22(2), 507–523 (2004)
    • 13. Kaliraj, K., Priya, P.K.L., Ravichandran, C.: An explication of finite-time stability for fractional delay model with neutral impulsive...
    • 14. Khudair, A.R., Haddad, S.A.M., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using the differential...
    • 15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics...
    • 16. Kumlin, P.: A note on fixed point theory. In: Mathematics, Chalmers and GU (2004)
    • 17. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)
    • 18. Laledj, N., Salim, A., Lazreg, J.E., Abbas, S., Ahmad, B., Benchohra, M.: On implicit fractional q-difference equations: analysis and...
    • 19. Luo, D., Alam, M., Zada, A., Riaz, U., Luo, Z.: Existence and stability of implicit fractional differential equations with Stieltjes boundary...
    • 20. Manjula, M., Kaliraj, K., Nisar, K.S., Ravichandran, C.: Existence, uniqueness and approximation of nonlocal fractional differential equation...
    • 21. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, Hoboken (1993)
    • 22. Morsy, A., Nisar, K.S., Ravichandran, C., Anusha, C.: Sequential fractional order neutral functional integro differential equations on...
    • 23. Nisar, K.S., Logeswari, K., Vijayaraj, V., Baskonus, H.M., Ravichandran, C.: Fractional order modeling the Gemini virus in Capsicum annuum...
    • 24. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
    • 25. Riaz, U., Zada, A.: Analysis of (α, β)-order coupled implicit caputo fractional differential equations using topological degree method....
    • 26. Riaz, U., Zada, A., Ali, Z., Ahmad, M., Xu, J., Fu, Z.: Analysis of nonlinear coupled systems of impulsive fractional differential equations...
    • 27. Riaz, U., Zada, A., Ali, Z., Cui, Y., Xu, J.: Analysis of coupled systems of implicit impulsive fractional differential equations involving...
    • 28. Salim, A., Lazreg, J.E., Ahmad, B., Benchohra, M., Nieto, J.J.: A study on k-generalized ψ-Hilfer derivative operator. Viet. J. Math....
    • 29. Salim, A., Alzabut, J., Sudsutad,W., Thaiprayoon, C.: On impulsive implicit ψ-caputo hybrid fractional differential equations with retardation...
    • 30. Sathiyaraj, T., Wang, J., Balasubramaniam, P.: Ulam’s stability of Hilfer fractional stochastic differential systems. Eur. Phys. J. Plus...
    • 31. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience, New York (1960)
    • 32. Vu, H., Ngo, H.V.: On initial value problem of random fractional differential equation with impulsive. Hacet. J. Math. Stat. 49(1), 282–293...
    • 33. Zada, A., Alam,M., Riaz, U.: Analysis of q-fractional implicit boundary value problems having Stieltjes integral conditions. Math. Methods...
    • 34. Zada, A., Alzabut, J., Waheed, H., Popa, I.L.: Ulam hyers stability of impulsive integrodifferential equations with Riemann–Liouville...
    • 35. Zada, A., Riaz, U., Khan, F.: Hyers–Ulam stability of impulsive integral equations. Boll. Unione Mat. Ital. 12(3), 453–467 (2019)
    • 36. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno