Ir al contenido

Documat


An Explication of Finite-Time Stability for Fractional DelayModel with Neutral Impulsive Conditions

  • K. Kaliraj [1] ; P. K. Lakshmi Priya [1] ; C. Ravichandran [2]
    1. [1] University of Madras

      University of Madras

      India

    2. [2] Kongunadu Arts and Science College,
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The article deals with the analysis of finite time stability (FTS) of multi state neutralfractional order systems with impulsive perturbations and state delays. FTS studiesabout the trajectories of a dynamical system which converge to equilibrium state in ashort period of time. Gronwall’s inequality is used as a main tool to derive the FTSconditions. The obtained theoretical results are validated with appropriate numerical simulations.

  • Referencias bibliográficas
    • 1.Abbas, S., Benchohra, M., Nieto, J.J.: Caputo-Fabrizio fractional differential equations with non instan-taneous impulses. Rendiconti del...
    • 2. Arthi, G., Brindha, N.: On finite-time stability of nonlinear fractional-order systems with impulses andmulti-state time delays. Results...
    • 3. Beta, S.: On the constrained controllability of dynamical systems with multiple delays in the state. Int.J. Appl. Math. Comput. Sci.13(4),...
    • 4. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. ControlOptim.38, 751–766 (2000)
    • 5. Debbouche, A., Nieto, J.J.: Relaxation in controlled systems described by fractional integro-differentialequations with nonlocal control...
    • 6. Debbouche, A., Nieto, J.J.: Sobolev type fractional abstract evolution equations with nonlocal condi-tions and optimal multi-controls....
    • 7. Farid, Y., Ruggiero, F.: Finite-time extended state observer and fractional-order sliding mode controllerfor impulsive hybrid port-Hamiltonian...
    • 8. Feckan, M., Zhou, Y., Wang, J.R.: On the concept and existence of solution for impulsive fractionaldifferential equations. Commun. Nonlinear...
    • 9. He, J., Kong, F., Nieto, J.J., Qui, H.: Globally exponential stability of piecewise pseudo almost periodicsolutions for neutral differential...
    • 10. Hei, X.D., Wu, R.C.: Finite-time stability of impulsive fractional-order systems with time-delay. Appl.Math. Model.40, 4285–4290 (2016)
    • 11. Hilal, K., Allauoi, Y.: Existence of solution of neutral fractional impulsive differential equations withinfinite delay. General Lett....
    • 12. Klamka, J., Babiarz, A., Czornik, A., Niezabitowski, M.: Controllability and stability of semilinearfractional order systems. Stud. Syst....
    • 13. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilferfractional differential equations...
    • 14. Kumar, V., Malik, M., Debbouche, A.: Total controllability of neutral fractional differential equationwith non-instantaneous impulsive...
    • 15. Kumar, V., Malik, M., Debbouche, A.: Stability and controllability analysis of fractional dampeddifferential system with non-instantaneous...
    • 16. Lazarevic, M.P., Spasic, A.M.: Finite-time stability analysis of fractional-order time-delay systems:Gronwall’s approach. Math. Comput....
    • 17. Lee, L., Liu, Y., Liang, J., Cai, X.: Finite time stability of nonlinear impulsive systems and its appli-cations in sampled-data systems....
    • 18. Li, M., Wang, J.R.: Finite-time stability and relative controllability of Riemann–Liouville fractionaldelay differential equations. Math....
    • 19. Li, M., Wang, J.R.: Finite-time stability of fractional delay differential equations. Appl. Math. Lett.64, 170–176 (2017)
    • 20. Liu, Y., Huang, H.Z.: Reliability assessment for fuzzy multi-state systems. Int. J. Syst. Sci.41, 365–379(2010)
    • 21. Luo, D., Luo, Z.: Existence of solutions for fractional differential inclusions with initial value conditionand non-instantaneous impulses....
    • 22. Magin, R.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng.32(1), 1–104 (2004).https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10
    • 23. Malik, M., Kumar, A., Feckan, M.: Existence, uniqueness and stability of solutions to second ordernonlinear differential equations with...
    • 24. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations.Wiley, New York (1993)
    • 25. Nisar, K.S., Jothimani, K., Kaliraj, K., Ravichandran, C.: An analysis of controllability results fornonlinear Hilfer neutral fractional...
    • 26. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, FractionalDifferential Equations, to Methods...
    • 27. Ravichandran,C.,Valliammal,N.,Nieto,J.J.:Newresultsonexactcontrollabilityofaclassoffractionalneutral integro-differential systems with...
    • 28. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles,Fields and Media. Springer (2011)
    • 29. Tian, Y., Wang, J.R., Zhou, Y.: Almost periodic solutions for a class of non-instantaneous impulsivedifferential equations. Quaest. Math.42,...
    • 30. Tuan, H.T., Czornik, A., Nieto, J.J., Niezabitowski, M.L.: Global attractivity for some classes ofRiemann–Liouville fractional differential...
    • 31. Wang, J.R., Feckan, M.: A general class of impulsive evolution equations. Topol. Methods NonlinearAnal.46, 915–933 (2015)
    • 32. Wang, J.R., Feckan, M.: Non-instantaneous Impulsive Differential Equations: Basic Theory and Com-putation. Institute of Physics Publishing...
    • 33. Wang, J.R., Ibrahim, A.G., Feckan, M., Zhou, Y.: Controllability of fractional non-instantaneous impul-sive differential inclusions without...
    • 34. Wang, G., Ahmad, B., Zhang, L., Nieto, J.J.: Comments on the concept of existence of solution forimpulsivefractionaldifferentialequations.Commun.NonlinearSci.Numer.Simul.19,401–403(2013)
    • 35. Wu, K.N., Na, M.Y., Wang, L., Ding, X., Wu, B.: Finite-time stability of impulsive reaction-diffusionsystems with and without time delay....
    • 36. Wu, S.: Joint importance of multistate systems. Comput. Ind. Eng.49, 63–75 (2005)
    • 37. Ye,H.,Gao,J.,Ding,Y.:AgeneralizedGronwallinequalityanditsapplicationtoafractionaldifferentialequation. J. Math. Anal. Appl.328, 1075–1081...
    • 38. Zhang, X., Li, C., Huang, T.: Impacts of state-dependent impulses on the stability of switching Cohen–Grossberg neural networks. Adv....
    • 39. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math.Appl.59, 1063–1077 (2010)
    • 40. Zong-Yao, S., Yu, S., Chih-Chiang, C.: Fast finite-time stability and its application in adaptive controlof high-order nonlinear system....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno