Ir al contenido

Documat


Mean square calculus and random linear fractional differential equations: Theory and applications

  • Clara Burgos Simón ; Juan Carlos Cortés López [1] Árbol académico ; Laura Villafuerte Altúzar [1] Árbol académico ; Rafael Jacinto Villanueva Micó Árbol académico
    1. [1] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

  • Localización: Applied Mathematics and Nonlinear Sciences, ISSN-e 2444-8656, Vol. 2, Nº. 2, 2017, págs. 317-328
  • Idioma: inglés
  • DOI: 10.21042/amns.2017.2.00001
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The aim to this paper is to study, in the mean square sense, a class of random fractional linear differential equation where the initial condition and the forcing term are assumed to be second-order random variables. The solution stochastic process of its associated Cauchy problem is constructed combining the application of a mean square chain rule for differentiating second- order stochastic processes and the random Fröbenius method. To conduct our study, first the classical Caputo derivative is extended to the random framework, in mean square sense. Furthermore, a sufficient condition to guarantee the existence of this operator is provided. Afterwards, the solution of a random fractional initial value problem is built under mild conditions. The main statistical functions of the solution stochastic process are also computed. Finally, several examples illustrate our theoretical findings.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno