Ir al contenido

Documat


A Preliminary Study on Deep Transfer Learning Applied to Image Classification for Small Datasets

    1. [1] Universidad Pablo de Olavide

      Universidad Pablo de Olavide

      Sevilla, España

    2. [2] Universidad de Sevilla

      Universidad de Sevilla

      Sevilla, España

  • Localización: 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020): Burgos, Spain ; September 2020 / coord. por Álvaro Herrero Cosío Árbol académico, Carlos Cambra Baseca Árbol académico, Daniel Urda Muñoz Árbol académico, Javier Sedano Franco Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2021, ISBN 978-3-030-57802-2, págs. 741-750
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A new transfer learning strategy is proposed for image classification in this work, based on an 8-layer convolutional neural network. The transfer learning process consists in a training phase of the neural network on a source dataset of images. Then, the last two layers are retrained using a different small target dataset of images. A preliminary study was conducted to train and test the transfer learning proposal on Malaria cell images for a binary classification problem. The methodology proposed has provided a 6.76% of improvement with respect to other three different strategies of training non-transfer learning models. The results achieved are quite promising and encourage to conduct further research in this field.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno