Ir al contenido

Documat


Data Balancing to Improve Prediction of Project Success in the Telecom Sector

  • Nuño Basurto [1] ; Alfredo Jiménez [2] ; Secil Bayraktar [3] ; Álvaro Herrero [1]
    1. [1] Universidad de Burgos

      Universidad de Burgos

      Burgos, España

    2. [2] Kedge Business School

      Kedge Business School

      Arrondissement de Bordeaux, Francia

    3. [3] Toulouse Business School

      Toulouse Business School

      Arrondissement de Toulouse, Francia

  • Localización: 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020): Burgos, Spain ; September 2020 / coord. por Álvaro Herrero Cosío Árbol académico, Carlos Cambra Baseca Árbol académico, Daniel Urda Muñoz Árbol académico, Javier Sedano Franco Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2021, ISBN 978-3-030-57802-2, págs. 366-373
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Investments in the telecom industry are often conducted through private participation projects, allowing a group of investors to build and/or opérate large infrastructure projects in the host country. As governments progressively removed the barriers to foreign ownership in this sector, these investment consortia have become increasingly international. Obviously, an accurate and early prediction of the success of such projects is very useful. Softcomputing can certainly contribute to address such challenge. However, the error rate obtained by classifiers when trying to forecast the project success is high due to the class imbalance (success vs. fail). To overcome such problem, present paper proposes the application of classifiers (Support Vector Machines and Random Forest) to data improved by means of data balancing techniques (both oversampling and undersampling). Results have been obtained on a real-life and publicly-available dataset from the World Bank.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno