Ir al contenido

Documat


Desigualdades de tipo Hermite-Hadamard para funciones cuya segunda derivada es convexa generalizada.

  • Rangel-Oliveros, Yenny Carolina [1] ; Vivas-Cortez, Miguel Jose
    1. [1] Pontificia Universidad Católica del Ecuador

      Pontificia Universidad Católica del Ecuador

      Quito, Ecuador

  • Localización: MATUA: Revista de matemática de la universidad del Atlántico, ISSN-e 2389-7422, Vol. 5, Nº. 2, 2018 (Ejemplar dedicado a: Revista MATUA), págs. 21-31
  • Idioma: español
  • Títulos paralelos:
    • On some Hermite-Hadamard type inequalities for functions whose second derivative are convex generalized.
  • Enlaces
  • Resumen
    • español

      En este art\'iculo establecemos algunos nuevos resultados relacionados a desigualdades del tipo Hermite-Hadamard para funciones cuya segunda derivada es $s-\varphi-$convexa.

    • English

      In this paper, we establish some new results related to the left-hand of the Hermite-Hadamard type inequalities for the class of functions whose second derivatives are $s$-$\varphi$-convex functions.

  • Referencias bibliográficas
    • bibitem{Agarwal} Agarwal R.P., Luo M.J., Raina R.K. textit{On Ostrowski Type inequalities,} Fasciculli Mathematici. textbf{56} (2016) 5-27.
    • bibitem{Alomari-1} Alomari, M. , Darus M., textit{Ostrowski type inequalities for quasi-convex functions with applications to special means.}...
    • bibitem{Alomari-2} Alomari, M. , Darus M., Dragomir S.S., Cerone P. textit{Ostrowski type inequalities for functions whose derivatives are...
    • bibitem{Arrow} Arrow K. J. and Enthoven A. D., textit{Quasiconcave Programming,} Econometrica, textbf{29}, (1961) 779-800.
    • bibitem{Badreddine} M. Badreddine, textit{New Ostrowski's inequalties,} Revista Colombiana de Matem'aticas. textbf{51}, (2017) 57-69.
    • bibitem{Bai} Bai R., Qi F and Xi B. textit{Hermite-Hadamard type inequalities for the m- and $(alpha,m)$-logarithmically convex functions,}...
    • bibitem{Bector} Bector C. R. and Singh C., textit{B-vex functions,} J. Optimiz. Theory. App., 71, (1991) 237-254.
    • bibitem{Bracamonte} Bracamonte M., Gim'enez J., Vivas M., textit{Hermite-Hadamard-F'ejer Type inequalities for strongly $(s,m)$-convex...
    • bibitem{Breckner} Breckner, W. W. textit{Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen...
    • bibitem{Cerone} P. Cerone, S. S. Dragomir, and J. Roumeliotis, textit{Some Ostrowski type inequalities for n-time differentiable mappings...
    • bibitem{Dragomir} Dragomir S.S. textit{On some new inequalities of Hermite-Hadamard type for m-convex functions.} Tamkang Journal of Mathematics....
    • bibitem{Erdem} Erdem Y., Ogunmez H. and Budak H. textit{On some Hermite-Hadamard type inequalities for strongly s-convex functions.} New Trends...
    • bibitem{Gordji} M. E. Gordji, M. R. Delavar, and M. De La Sen, textit{On $varphi$-convex functions,} J. Math. Inequal. textbf{10}, no 1, (2016)...
    • bibitem{Grinalatt-1} Grinalatt M., Linnainmaa J. T. textit{Jensen's Inequality, parameter uncertainty and multiperiod investment,} Review...
    • bibitem{Hanson} Hanson M. A., textit{On sufficiency of the Kuhn-Tucker conditions,} J. Optimiz. Theory. App. 80, (1981) 545-550.
    • bibitem{Hudzik} Hudzik H., and Maligranda L., textit{Some remarks on $s-$convex functions ,} Aequationes Mathematicae. 48, (1994) 100-111.
    • bibitem{Li} Li X. F., Dong J. L. and Liu Q. H., textit{Lipschitz B-vex functions and nonsmooth programming,} J. Optimiz. Theory. App., 3,...
    • bibitem{Liu} Liu W., Wen W., Park J. textit{Hermite-Hadamard type Inequalities for MT-convex functions via classical integrals and fractional...
    • bibitem{Mangasarian} Mangasarian O. L., textit{Pseudo-Convex Functions,} SIAM. J. Control. 3, (1965) 281-290.
    • bibitem{Meftah} Meftah B., textit{New Ostrowski's inequalties,} Revista Colombiana de Matem'aticas. 51, (2017) 57-69.
    • bibitem{Mohan} Mohan S. R. and Neogy S. K., textit{On invex sets and preinvex functions,} J. Math. Anal. Appl. 189, (1995) 901-908.
    • bibitem{Ostrowski} Ostrowski A.,textit{Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert,} Comment....
    • bibitem{Ozdemir} M. E. " Ozdemir, C. Yildiz, A. O. Akdemir and E. Set, textit{On some inequalities for s-convex functions and applications,}...
    • bibitem{Pecaric} J. Pecaric, F. Proschan, and Y. L. Tong, textit{Convex functions, partial orderings, and statistical applications,} no. 187,...
    • bibitem{Ruel} Ruel J.J., Ayres M. P. textit{Jensen's inequality predicts effects of environmental variations,} Trends in Ecology and Evolution....
    • bibitem{Sarikaya} Sarikaya M.Z., Filiz H., Kiris M. E. textit{On some generalized integral inequalities for Riemann Lioville Fractional Integral,}...
    • bibitem{Set} Set E., textit{New inequalities of Ostrowski type for mapping whose derivatives are s-convex in the second sense via fractional...
    • bibitem{Tunc} M. Tunc c , textit{Ostrowski type inequalities via h-convex functions with applications to special means,} Journal of Inequalities...
    • bibitem{Varosanec} S. Varo$hat{s}$anec., textit{On h-convexity,} J. Math. Anal. Appl. 326, no. 1, 303311.MR2277784 (2007).
    • bibitem{Vivas-1} Vivas M., Garc'ia C., textit{Ostrowski Type inequalities for functions whose derivatives are $(m,h_1,h_2)$-convex,} Appl....
    • bibitem{Vivas-2} Vivas M., textit{F'ejer Type inequalities for $(s,m)$-convex functions in the second sense,} Appl. Math and Inf. Scl.,...
    • bibitem{Rangel-Vivas} Rangel-Oliveros Y.C. and Vivas-Cortez M. J., textit{Ostrowski type inequalities for functions whose second derivative...
    • bibitem{Youness} Youness E. A., textit{E-convex sets, E-convex functions and E-convex programming,} J. Optimiz. Theory. App. 102, (1999) 439-450.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno