Ir al contenido

Documat


The object-tool duality in mathematical modelling. A framework to analyze students’ appropriation of Sankey diagrams to model dynamic processes

  • Pauline Vos [1] ; Peter Frejd [2]
    1. [1] University of Agder

      University of Agder

      Noruega

    2. [2] Linköping University

      Linköping University

      Linköpings S:t Lars, Suecia

  • Localización: Avances de investigación en educación matemática: AIEM, ISSN-e 2254-4313, Nº. 17, 2020, págs. 52-66
  • Idioma: inglés
  • DOI: 10.35763/aiem.v0i17.305
  • Títulos paralelos:
    • La dualidad objeto-herramienta en la modelización matemática. Un marco de análisis de la apropiación de los estudiantes de diagramas Sankey para modelar procesos dinámicos
  • Enlaces
  • Resumen
    • español

      A menudo los estudiantes no perciben la relevancia de las matemáticas y de su aprendizaje. Este artículo presenta un análisis exploratorio de un caso de estudio, en el cual se introducen los diagramas de Sankey para estudiantes de octavo grado. El objetivo fue explorar hasta qué punto estos estudiantes se apropiaron de los diagramas Sankey, es decir, si los describían como objetos en sí mismos y si eran capaces de utilizarlos para modelizar y visualizar fenómenos relevantes para ellos. Con base en la Teoría Cultural-Histórica de la Actividad, desarrollamos un constructo analítico definido como la dualidad objeto-herramienta, que coordinan las matemáticas como conjunto de objetos y conjunto de herramientas. El análisis de respuestas de los estudiantes mostró cómo usaron estos diagramas a modo de herramientas para visualizar ciertos fenómenos. Cuando se les pidió que describieran el objeto, todos mencionaron los aspectos como herramienta. Así, en su proceso de apropiación la interpretación como herramienta se antepuso a la de objeto. Nuestra contribución es que el trabajo con la vertiente herramienta de las matemáticas antes que con la de objeto puede aumentar la relevancia que los estudiantes dan a las matemáticas, resultando ser una línea a desarrollar en futuras investigaciones.

    • English

      Students often do not experience the relevance of learning mathematics. This paper reports on an exploratory case study, in which a class of grade 8 students (n=35) was introduced to Sankey diagrams.

      The aim was to explore to what extent these students could appropriate Sankey diagrams, meaning: they could describe these as objects in themselves and they could use them to model and visualize phenomena relevant to them. Based on Cultural-Historical Activity Theory, we developed an analytical construct defined as the object-tool duality, coordinating mathematics as a set of objects and as a set of tools. The analysis of students’ answers showed that they could use these diagrams as tools to visualize phenomena. When asked to describe the object, all mentioned the tool-side. So, in their appropriation the tool-side came before the object-side. Our contribution is that teaching the tool-side of mathematics before the object-side may increase students’ sense of the relevance of mathematics, which is a topic to develop for future research.

  • Referencias bibliográficas
    • Andreassen, I. S., Nilsen H. K., & Vos, P. (submitted). Matematikk og bedriftserfaringer: Spenninger som oppstår når elever på 8. trinn...
    • Barquero, B., Bosch, M., & Gascón, J. (2013). The ecological dimension in teaching of mathematical modelling at university. Recherches...
    • Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), Proceedings of the 12th...
    • Boaler, J. (2000). Mathematics from another world: Traditional communities and the alienation of learners. The Journal of Mathematical Behavior,...
    • Boyer, C. (1959). The history of calculus & its conceptual development. New York: Dover.
    • British Election Study (2019). Explaining voter volatility. October 8th 2019. Retrieved 14 February 2020 from https://www.britishelectionstudy.com/mediaresources/#.Xkb0ZTJKjIV.
    • Frejd, P., & Bergsten, C. (2016). Mathematical modelling as a professional task. Educational Studies in Mathematics, 91(1), 11–35.
    • FitzSimons, G., & Boistrup, L. B. (2017). In the workplace mathematics does not announce itself: Towards overcoming the hiatus between...
    • Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional...
    • Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of Mathematics Teacher Education, 11, 199–219.
    • Hernández-Martínez, P., & Vos, P. (2018). “Why do I have to learn this?” A study from mathematical modelling education about the relevance...
    • Julie, C., & Mudaly, V. (2007). Mathematical modelling of social issues in school mathematics in South Africa. In W. Blum et al. (Eds.),...
    • Kaiser, G. (2014). Mathematical modelling and applications in education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 396–404)....
    • Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Boston, MA: Houghton...
    • Monaghan, J. (2016). Activity theoretic approaches. In J. Monaghan, L. Trouche, & J. M. Borwein (Eds.), Tools and mathematics (pp. 197–218)....
    • Moschkovich, J. N. (2004). Appropriating mathematical practices: Learning to use functions through interaction with a tutor. Educational Studies...
    • Nilsen, H. K., & Vegusdal, A. (2017). Mathematics at the enterprise: Industry, university and school working together to facilitate learning....
    • Niss, M. (1994). Mathematics in society. In R. Biehler et al. (Eds.), The didactics of mathematics as a scientific discipline (pp. 367–378)....
    • Prodromou, T. (Ed.) (2017). Data visualization and statistical literacy for open and big data. Hershey, PA: IGI Global.
    • Radford, L. (2010). Signs and meanings in students' emergent algebraic thinking: A semiotic analysis. Educational Studies in Mathematics,...
    • Roth, W.-M., & Radford, L. (2011). A cultural-historical perspective on mathematics teaching and learning. Rotterdam, the Netherlands:...
    • Säljö, R. (1991). Learning and mediation: Fitting reality into a table. Learning and Instruction, 1(3), 261–272.
    • Tufte, E. R. (2001). The visual display of quantitative information. Cheshire, CT: Graphics Press.
    • Vos, P. (2011). What is ‘authentic’ in the teaching and learning of mathematical modelling? In G. Kaiser et al. (Eds.), Trends in teaching...
    • Vos, P. (2019). Flytdiagrammer. Kristiansand, Norway: University of Agder.
    • Vos, P. (2020). Task contexts in Dutch mathematics education. In M. Van den HeuvelPanhuizen (Ed.), National reflections on the Netherlands...
    • Vos, P., & Frejd, P. (submitted). Grade-8 students creating Sankey diagrams to model, visualize and communicate environmental processes....
    • Vos, P., & Roorda, G. (201k8). Students’ readiness to appropriate the derivative - metaknowledge as support for the ZPD. In E. Bergqvist...
    • Vygotsky, L. (1978). Mind in society. Cambridge, MA: Harvard University Press.
    • Wake, G. (2014). Making sense of and with mathematics: The interface between academic mathematics and mathematics in practice. Educational...
    • Williams, J., & Goos, M. (2012). Modelling with mathematics and technologies. In K. Clements et al. (Eds.), Third International Handbook...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno