Ir al contenido

Documat


Executable Functions of the Representations in Learning the Algebraic Concepts

  • Akram Daryaee [1] ; Ahmad Shahvarani [1] ; Abolfazl Tehranian [1] ; Farhad Hosseinzadeh Lotfi [1] ; Mohsen Rostamy-Malkhalifeh [1]
    1. [1] Islamic Azad University

      Islamic Azad University

      Irán

  • Localización: PNA: Revista de investigación en didáctica de la matemática, ISSN-e 1887-3987, Vol. 13, Nº. 1, 2018, págs. 1-18
  • Idioma: inglés
  • DOI: 10.30827/pna.v13i1.6903
  • Títulos paralelos:
    • Funciones ejecutables de las representaciones en el aprendizaje de los conceptos algebraicos
  • Enlaces
  • Resumen
    • español

      Este estudio tiene como objetivo examinar el papel de las representaciones múltiples en el aprendizaje de los conceptos algebraicos en estudiantes de educación secundaria. Se desarrolló una investigación semiexperimental para la enseñanza de representaciones numéricas, simbólicas y gráficas y la enseñanza tradicional, en este estudio participaron 83 estudiantes femeninas del décimo grado de una escuela secundaria en Teherán. Se concluyó que hay una diferencia significativa entre los puntajes promedio de matemáticas en el grupo control y los grupos experimentales.

      El uso del método basado en diferentes representaciones ayudó a las estudiantes a ser creativas y proporcionar ejemplos de álgebra similares; por lo tanto, la capacidad de análisis aumentará.

    • English

      This study aimed to examine the role of multiple representations in learning algebraic concepts for high school students. Using the semiexperimental research method for teaching of numerical, symbolic, and graphical representations, and traditional teaching, 83 female students were selected from the tenth grade of a high school in Tehran. We concluded that there is a significant difference between the mean scores of mathematics in the control and experimental groups. Using the method based on different representations helped the students to become creative and provide similar Algebra examples; thereby analysis power will be increased.

  • Referencias bibliográficas
    • Adu-Gyamfi, K., (2002). External Multiple Representations in Mathematics Teaching, Unpublished Thesis, Raleigh: North Carolina State University.
    • Blanton, M. & Kaput, J. (2003). Developing elementary teachers' “algebra eyes and ears”. Teaching Children Mathematics, 10(2), 70-77.
    • Brunner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S. & Webb, D. (1997). Learning by understanding: The role of...
    • Cramer, K., &Bezuk, N. (1991). Multiplication of fractions: teaching for understanding. Arithmetic Teacher, 39(3), 34-37.
    • Davies, D. (1988). An algebra class unveils models of linear equations in three variables. In A. F. Coxford (Ed.), The Ideas of Algebra, K-12...
    • DiSessa, A. A., Hammer, D. &Sherin, B. (1991). Inventing graphing: metarepresentational expertise in children. Journal of Mathematical...
    • Duval, R., (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, 61,...
    • Gouya, Z, Sereshti, H. (2006). Teaching calculus: existing problems and the role of technology. Journal of developments in Mathematics Education,...
    • Herscovics, N. (1989). Cognitive obstacles encountered in the learning of algebra. In S. Wagner, & C. Kieran (Eds.), Research Issues in...
    • Janvier, C. (1987a). Conceptions and representations: The circle as an example In C. Janvier (Ed.), Problems of Representations in the Learning...
    • Janvier, C. (1987b). Representations and understanding: The notion of function as an example. In C. Janvier (Ed.), Problems of Representations...
    • Kaput, J. J. (1986). Information technology and mathematics: Opening new representational windows. Journal of Mathematical Behavior, 5, 187-207.
    • Kaput, J. J. (1994). The representational roles of technology in connecting mathematics with authentic experience. In R. Biehler, R. W. Scholz,...
    • Kieran, C. (1989) The early learning of algebra: A structural perspective, In S. Wagner, & C. Kieran (Eds.), Research Issues in the Learning...
    • Kieran, C. &Chalouh, L. (1992). Prealgebra: The transition from arithmetic to algebra. In D. T. Owens (Ed.), Research Ideas for the Classroom:...
    • Kilpatrick, J, Swafford, J. (2001). Helping children learn mathematics. [Trans] Mehdi Behzad and Zahra Gouya (2008), First edition, Fatemi...
    • Koedinger, K. R., & Nathan, M. J. (2000). Teachers` and researchers` beliefs about the development of algebraic reasoning. Journal...
    • Lesh, R. (1979). Mathematical learning disabilities: considerations for identification, diagnosis and remediaton. In R. Lesh, D. Mierkiewicz,...
    • Lesh, R., Post, T., & Behr, M. (1987b). Representations and translations among representations in mathematics learning and problem solving....
    • Lubinski, C. A. & Otto, A. D. (2002). Meaningful mathematical representations and early algebraic reasoning. Teaching Children Mathematics,...
    • Murata, A., & Stewart, Ch. (2017). Facilitating Mathematical Practices through Visual Representations, Teaching Children Mathematics,...
    • McGregor, M., & Price, E. (1999). An exploration of aspects of language proficiency and algebra learning. Journal of Research in Mathematics...
    • Moseley B. & Brunner M. E. (1997). Using multiple representations for conceptual change in pre-algebra: A comparison of variable usage...
    • NCTM. (2000). Principles and Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.
    • National Council of Teachers of Mathematics, (2000). Principles and Standards for School Mathematics (NCTM-2000) .pp :67-70, 360-363.
    • Ozgun-Koca S. (2001). Computer-based representations in mathematics classrooms: The effects of multiple linked and semi-linked representations...
    • Pape, S. J., &Tchoshanov, M. A. (2001). The role of representation (s) in developing mathematical understanding. Theory into Practice,...
    • Pirie, S. E. B. & Martin, L. (1997). The equation, the whole equation and nothing but the equation! One approach to the teaching of linear...
    • Post, T., Behr, M. J., &Lesh, R. (1988). Proportionality and the development of prealgebra understanding. In A. F. Coxford (Ed.), The...
    • Rau, M. A., & Matthews, P. G. (2017). How to make ‘more’ better? Principles for effective use of multiple representations to enhance student...
    • Sauriol, J. (2013). Introducing Algebra through the Graphical Representation of Functions: A Study among LD Students, ProQuest LLC, Ph.D....
    • Smith, E. (2004). Statis and change: Integrating patterns, functions and algebra throughout the K-12 curriculum. In J. Kilpatrick, W. G. Martin...
    • Tall, D.O., (1991), (Ed), Advanced Mathematical Thinking, Kluwer Academic Publishers, theNetherlands.
    • Tishman, S., & Perkins, D. (1997). The language of thinking. Phi Delta Kappan,78(5), 368-374.
    • van de Walle, J. A. (2001). Elementary and Middle School Mathematics: Teaching Developmentally. New York: Longman, Inc.
    • van Dyke, F., &Craine, T. (1997). Equivalent representations in the learning of algebra. Mathematics Teacher, 90, 616-619.
    • Wagner, S. (1983). What are these things called variables?, Mathematics Teacher, (474-479).
    • Wagner, S., & Kieran, C. (1999). An agenda for research on the learning and teaching of algebra. In B. Moses (Ed.), Algebraic Thinking,...
    • Yerushalmy, M. & Gilead, S. (1997). Solving equations in a technological environment. The Mathematics Teacher, 90(2), 156-162.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno