Ir al contenido

Documat


Are automatic metrics robust and reliable in specific machine translation tasks?

  • Autores: Mara Chinea Rios, Álvaro Peris Abril, Francisco Casacuberta Nolla Árbol académico
  • Localización: Proceedings of the 21st Annual Conference of the European Association for Machine Translation: 28-30 May 2018, Universitat d'Alacant, Alacant, Spain / coord. por Juan Antonio Pérez Ortiz Árbol académico, Felipe Sánchez Martínez Árbol académico, Miquel Esplà Gomis, Maja Popovic, Celia Rico Pérez Árbol académico, André Martins, Joachim Van den Bogaert, Mikel L. Forcada Zubizarreta Árbol académico, 2018, ISBN 978-84-09-01901-4, págs. 89-98
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We present a comparison of automatic metrics against human evaluations of translation quality in several scenarios which were unexplored up to now. Our experimentation was conducted on translation hypotheses that were problematic for the automatic metrics, as the results greatly diverged from one metric to another. We also compared three different translation technologies. Our evaluation shows that in most cases, the metrics capture the human criteria. However, we face failures of the automatic metrics when applied to some domains and systems. Interestingly, we find that automatic metrics applied to the neural machine translation hypotheses provide the most reliable results. Finally, we provide some advice when dealing with these problematic domains.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno