Ir al contenido

Documat


Feature decay algorithms for neural machine translation

  • Autores: Alberto Poncelas, Gideon Maillette de Buy Wenniger, Andy Way Árbol académico
  • Localización: Proceedings of the 21st Annual Conference of the European Association for Machine Translation: 28-30 May 2018, Universitat d'Alacant, Alacant, Spain / coord. por Juan Antonio Pérez Ortiz Árbol académico, Felipe Sánchez Martínez Árbol académico, Miquel Esplà Gomis, Maja Popovic, Celia Rico Pérez Árbol académico, André Martins, Joachim Van den Bogaert, Mikel L. Forcada Zubizarreta Árbol académico, 2018, ISBN 978-84-09-01901-4, págs. 239-248
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Neural Machine Translation (NMT) systems require a lot of data to be competitive. For this reason, data selection techniques are used only for fine-tuning systems that have been trained with larger amounts of data. In this work we aim to use Feature Decay Algorithms (FDA) data selection techniques not only to fine-tune a system but also to build a complete system with less data. Our findings reveal that it is possible to find a subset of sentence pairs, that outperforms by 1.11 BLEU points the full training corpus, when used for training a German-English NMT system.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno