Ir al contenido

Documat


Mitosis Detection in Breast Cancer Using Superpixels and Ensemble Classifiers

  • Autores: César A. Ortiz Toro, Consuelo Gonzalo Martín Árbol académico, Angel Mario García Pedrero, Alejandro Rodríguez González Árbol académico, Ernestina Menasalvas Árbol académico
  • Localización: 11th International Conference on Practical Applications of Computational Biology & Bioinformatics / Florentino Fernández Riverola (ed. lit.) Árbol académico, 2017, ISBN 978-3-319-60815-0, págs. 137-145
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Determining the severity and potential aggressiveness of breast cancer is an important step in the determination of the treatment options for a patient. Mitosis activity is one of the main components in breast cancer severity grading. Currently, mitosis counting is a laborious, prone to processing errors, done manually by a pathologist.

      This paper presents a novel approach for automatic mitosis detection, where promising candidates are selected from a superpixel segmentation of the image and classified using an ensemble classifier created from a selection from a pool of different color spaces, different features vector


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno