Arrondissement Brussel-Hoofdstad, Bélgica
París, Francia
Dans la première partie de cet article, nous examinons les apports de la philosophie de Wittgenstein à la discussion sur l’existence (simultanée) de pratiques mathématiques différentes, culturellement déterminées.Nous avançons que les derniers travaux de Wittgenstein offrent un cadre fructueux pouvant servir de fondation philosophique aux ethnomathématiques. De fait, Wittgenstein a été cité dans nombre de travaux - dont nous donnons un aperçu dans cet article - menés dans le champ de l’ethnomathématique. La question philosophique centrale discutée ici concerne l’abandon par Wittgenstein du concept essentialiste de « langage », niant ainsi l’existence d’un langage universel. Les langues - ou « jeux de langage » selon l’expression de Wittgenstein - sont plongé(e)s dans une certaine « forme de vie », dans des formations sociales et culturelles, et dans un ensemble d’activités collectives. Cette idée incite à analyser la rationalité (mathématique) comme une invention - ou une construction - qui a lieu dans des contextes locaux/sociaux spécifiques. Dans une deuxième partie, nous illustrons les idées de Wittgenstein en analysant les aspects mathématiques de deux activités généralement évoquées sous l’appellation « jeux de ficelle » et « dessins de sable », et pratiquées dans diverses sociétés. Une analyse ethnomathématique comparative permet de mettre en évidence des caractéristiques communes et des traits distinctifs dans l’expression d’une rationalité mathématique telle qu’elle s’exprime dans ces deux pratiques, d’une société à l’autre. Enfin, nous suggérons qu’une approche philosophico-anthropologique des pratiques mathématiques est susceptible d’offrir un éclairage nouveau sur les interrelations entre « mathématiques » et « cultures ». Des recherches philosophiques permettent d’avancer sur la question de l’existence des (ethno-)mathématiques culturellement déterminées, alors que dans le même temps l’approche anthropologique - et ethnographique - offre de nouveaux matériaux pour étudier des pratiques à caractère mathématique dans leurs liens avec le contexte culturel. Nous proposons cette double approche dans la perspective de mieux caractériser les pratiques mathématiques dans des termes à la fois sociologiques et épistémologiques.
In this paper we first explore how Wittgenstein’s philosophy provides a conceptual tools to discuss the possibility of the simultaneous existence of culturally different mathematical practices. We will argue that Wittgenstein’s later work will be a fruitful framework to serve as a philosophical background to investigate ethnomathematics (Wittgenstein 1973). We will give an overview of Wittgenstein’s later work which is referred to by many researchers in the field of ethnomathematics. The central philosophical investigation concerns Wittgenstein’s shift to abandoning the essentialist concept of language and therefore denying the existence of a universal language. Languages—or ‘language games’ as Wittgenstein calls them—are immersed in a form of life, in a cultural or social formation and are embedded in the totality of communal activities. This gives rise to the idea of rationality as an invention or as a construct that emerges in specific local contexts. In the second part of the paper we introduce, analyse and compare the mathematical aspects of two activities known as string figure-making and sand drawing, to illustrate Wittgenstein’s ideas. Based on an ethnomathematical comparative analysis, we will argue that there is evidence of invariant and distinguishing features of a mathematical rationality, as expressed in both string figure-making and sand drawing practices, from one society to another. Finally, we suggest that a philosophical-anthropological approach to mathematical practices may allow us to better understand the interrelations between mathematics and cultures. Philosophical investigations may help the reflection on the possibility of culturally determined ethnomathematics, while an anthropological approach, using ethnographical methods, may afford new materials for the analysis of ethnomathematics and its links to the cultural context. This combined approach will help us to better characterize mathematical practices in both sociological and epistemological terms.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados