Ir al contenido

Documat


Generalizations of Z-supercontinuous functions and Dδ-supercontinuous functions

  • Kohli, J.K. [1] ; Singh, D. [1] ; Kumar, Rajesh [1]
    1. [1] University of Delhi

      University of Delhi

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 9, Nº. 2, 2008, págs. 239-251
  • Idioma: inglés
  • DOI: 10.4995/agt.2008.1804
  • Enlaces
  • Resumen
    • Two new classes of functions, called ‘almost z-supercontinuous functions’ and ’almost Dδ-supercontinuous functions’ are introduced. The class of almost z-supercontinuous functions properly includes the class of z-supercontinuous functions (Indian J. Pure Appl. Math. 33(7), (2002), 1097-1108) as well as the class of almost clopen maps due to Ekici (Acta. Math. Hungar. 107(3), (2005), 193-206) and is properly contained in the class of almost Dδ-supercontinuous functions which in turn constitutes a proper subclass of the class of almost strongly θ-continuous functions due to Noiri and Kang (Indian J. Pure Appl. Math. 15(1), (1984), 1-8) and which in its turn include all δ-continuous functions of Noiri (J. Korean Math. Soc. 16 (1980), 161-166). Characterizations and basic properties of almost z-supercontinuous functions and almost Dδ-supercontinuous functions are discussed and their place in the hierarchy of variants of continuity is elaborated. Moreover, properties of almost strongly θ-continuous functions are investigated and sufficient conditions for almost strongly θ-continuous functions to have u θ-closed (θ-closed) graph are formulated.

  • Referencias bibliográficas
    • D. Carnahan, Locally nearly compact spaces, Boll. Mat. Un. Ital. 6, no. 4 (1972), 146–153.
    • A. K. Das, A note on θ-Hausdorff spaces, Bull. Cal. Math. Soc. 97, no. 1(2005), 15–20.
    • J. Dontchev, M. Ganster and I. Reilly, More on almost s-continuity, Indian J. Math. 41 (1999), 139–146.
    • E. Ekici, Generalization of perfectly continuous, regular set-connected and clopen functions, Acta. Math. Hungar. 107, no. 3 (2005), 193–206.
    • http://dx.doi.org/10.1007/s10474-005-0190-2
    • Z-Frolik, Generalizations of compact and Lindelöf spaces, Czechoslovak Math J. 13, no. 84 (1959), 172–217 (Russian) MR 21 # 3821.
    • N. C. Heldermann, Developability and some new regularity axioms, Can. J. Math. 33, no. 3(1981), 641–668.
    • http://dx.doi.org/10.4153/CJM-1981-051-9
    • E. Hewitt, On two problems of Urysohn, Ann. of Math. 47, no.3 (1946), 503–509. http://dx.doi.org/10.2307/1969089
    • J. K. Kohli and A. K. Das, New normality axioms and decompositions of normality, Glasnik Mat. 37, no. 57 (2002), 105–114.
    • J. K. Kohli and A. K. Das, On functionally θ-normal spaces, Applied General Topology 6, no. 1 (2005), 1–14.
    • J. K. Kohli and A. K. Das, A class of spaces containing all generalized absolutely closed (almost compact) spaces, Applied General Topology...
    • J. K. Kohli, A. K. Das and R. Kumar, Weakly functionally θ-normal spaces, θ-shrinking of covers and partition of unity, Note di Matematica...
    • J. K. Kohli and R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33, no. 7 (2002), 1097–1108.
    • J. K. Kohli and D. Singh, Dδ-supercontinuous functions, Indian J.Pure Appl. Math. 34, no. 7 (2003), 1089–1100.
    • J. K. Kohli and D. Singh, Between compactness and quasicompactness, Acta Math. Hungar. 106, no. 4 (2005), 317–329.
    • http://dx.doi.org/10.1007/s10474-005-0022-4
    • J. K. Kohli and D. Singh, Between weak continuity and set connectedness, Studii Si Cercetari Stintifice Seria Mathematica 15 (2005), 55–65.
    • J. K. Kohli and D. Singh, Between regularity and complete regularity and a factorization of complete regularity, Studii Si Cercetari Stintifice...
    • J. K. Kohli and D. Singh, Almost cl-supercontinuous functions, Applied General Topology, to appear.
    • N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269.
    • http://dx.doi.org/10.2307/2309695
    • P. E. Long and L. Herrington, Strongly θ-continuous functions, J. Korean Math. Soc. 8 (1981), 21–28.
    • P. E. Long and L. Herrington, The Tθ-topology and faintly continuous functions, Kyungpook Math. J. 22 (1982), 7–14.
    • J.Mack, Countable paracompactness and weak normality properties, Trans. Amer.Math. Soc. 148 (1970), 265–272.
    • http://dx.doi.org/10.1090/S0002-9947-1970-0259856-3
    • B. M. Munshi and D. S. Bassan, Supercontinuous mappings, Indian J. Pure Appl. Math. 13 (1982), 229–236.
    • T. Noiri, On functions with strongly closed graph, Acta Math. Hungar. 32 (1978), 1–4.
    • http://dx.doi.org/10.1007/BF01902194
    • T. Noiri, On δ-continuous functions, J. Korean Math. Soc. 18 (1980), 161–166.
    • T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure. Appl. Math. 15, no. 3 (1984), 241–250.
    • T. Noiri, Strong forms of continuity in topological spaces, Suppl. Rendiconti Circ. Mat. Palermo, II 12 (1986), 107–113.
    • T. Noiri and S. M. Kang, On almost strongly -continuous functions, Indian J. Pure Appl. Math. 15, no. 1 (1984), 1–8.
    • J. R. Porter and J. Thomas, On H-closed spaces and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159–170.
    • I. L. Reilly and M. K. Vamanamurthy, On super-continuous mappings, Indian J. Pure. Appl. Math. 14, no. 6 (1983), 767–772.
    • M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Mat. 4, no. 24 (1969), 89–99.
    • M. K. Singal and S. P. Arya, On almost normal and almost completely regular spaces, Glasnik Mat. 5, no. 25 (1970), 141–152.
    • M. K. Singal and A. Mathur, On nearly compact spaces, Boll. Un. Mat. Ital. 2, no. 4 (1969), 702–710.
    • M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J. 16 (1968), 63–73.
    • D. Singh, cl-supercontinuous functions, Applied General Topology 8, no. 2 (2007), 293–300.
    • S. Sinharoy and S. Bandyopadhyay, On θ-completely regular spaces and locally θ− H-closed spaces, Bull. Cal. Math. Soc. 87 (1995), 19–28.
    • N. K. Veliˇcko, H-closed topological spaces, Amer. Math. Soc. Transl. 78, no. 2 (1968), 103–118.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno