Ir al contenido

Documat


On functionally θ-normal spaces

  • Kohli, J.K. [1] ; Das, A.K. [1]
    1. [1] University of Delhi

      University of Delhi

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 6, Nº. 1, 2005, págs. 1-14
  • Idioma: inglés
  • DOI: 10.4995/agt.2005.1960
  • Enlaces
  • Resumen
    • Characterizations of functionally θ-normal spaces including the one that of Urysohn’s type lemma, are obtained. Interrelations among (functionally) θ-normal spaces and certain generalizations of normal spaces are discussed. It is shown that every almost regular (or mildly normal ≡ k-normal) θ-normal space is functionally θ-normal. Moreover, it is shown that every almost regular weakly θ-normal space is mildly normal. A factorization of functionally θ-normal space is given. A Tietze’s type theorem for weakly functionally θ-normal space is obtained. A variety of situations in mathematical literature wherein the spaces encountered are (functionally) θ-normal but not normal are illustrated.

  • Referencias bibliográficas
    • R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri press, Missouri (1974).
    • S. Fomin, Extensions of topological spaces, Ann. of Math. 44 (1943), 471–480. http://dx.doi.org/10.2307/1968976
    • G. Gierz, K. H. Hoffman, K. Keimel, J. D. Lawson, M. Mislov and D. S. Scott, A Compendium of Continuous Lattices, Springer Verlag, Berlin...
    • J. E. Joseph, θ-closure and θ-subclosed graphs, Math. Chron. 8(1979), 99–117.
    • J. L. Kelley, General Topology, Van Nostrand, New York, (1955).
    • J. K. Kohli and A. K. Das, New normality axioms and decompositions of normality, Glasnik Mat. 37(57) (2002), 163–173.
    • J. K. Kohli, A. K. Das and R. Kumar, Weakly functionally θ-normal spaces, θ−shrinking of covers and partition of unity, Note di Matematica...
    • J. K. Kohli and A. K. Das, A class of spaces containing all almost compact spaces (preprint).
    • Ernst Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser, Boston, (1985).
    • J.Mack, Countable paracompactness and weak normality properties, Trans. Amer.Math. Soc. 148 (1970), 265–272. http://dx.doi.org/10.1090/S0002-9947-1970-0259856-3
    • P. Papic Sur les espaces H-fermes, Glasnik Mat. -Fiz Astr. 14 (1959) 135–141.
    • M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Mat. 4(24) (1969), 89–99.
    • M. K. Singal and S. P. Arya, On almost normal and almost completely regular spaces, Glasnik Mat. 5(25) (1970), 141–152.
    • M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math J. 13 (1973), 27–31.
    • E. V. Stchepin, Real valued functions and spaces close to normal, Sib. J. Math. 13:5 (1972), 1182–1196.
    • L. A. Steen and J. A. Seeback, Counter Examples in Topology, Springer Verlag, New York, (1978). http://dx.doi.org/10.1007/978-1-4612-6290-9
    • N. V. Velicko H-closed topological spaces, Amer. Math. Soc, Transl. 78(2), (1968), 103–118.
    • G. Vigilino, Seminormal and C-compact spaces, Duke J. Math. 38 (1971), 57–61. http://dx.doi.org/10.1215/S0012-7094-71-03808-7
    • P. Zenor, A note on Z-mappings and WZ-mappings, Proc. Amer. Math. Soc. 23 (1969), 273–275.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno