Ir al contenido

Documat


cl-Supercontinuous Functions

  • Singh, D. [1]
    1. [1] University of Delhi

      University of Delhi

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 8, Nº. 2, 2007, págs. 293-300
  • Idioma: inglés
  • DOI: 10.4995/agt.2007.1899
  • Enlaces
  • Resumen
    • Basic properties of cl-supercontinuity, a strong variant of continuity, due to Reilly and Vamanamurthy [Indian J. Pure Appl. Math., 14 (1983), 767–772], who call such maps clopen continuous, are studied. Sufficient conditions on domain or range for a continuous function to be cl-supercontinuous are observed. Direct and inverse transfer of certain topological properties under cl-supercontinuous functions are studied and existence or nonexistence of certain cl-supercontinuous function with specified domain or range is outlined.

  • Referencias bibliográficas
    • R. C. Jain, The role of regularly open sets in general topology, Ph.D. thesis, Meerut Univ., Institute of Advanced Studies, Meerut, India...
    • J. K. Kohli, A class of spaces containing all connected and all locally connected spaces, Math. Nachricten 82 (1978), 121–129. http://dx.doi.org/10.1002/mana.19780820113
    • J. K. Kohli and R. Kumar, Z-supercontinuous functions, Indian J. Pure Appl. Math. 33 (7) (2002), 1097–1108.
    • J. K. Kohli and D. Singh, D-supercontinuous functions, Indian J. Pure Appl. Math. 32 (2) (2001), 227–235.
    • J. K. Kohli and D. Singh, Dδ-supercontinuous functions, Indian J. Pure Appl. Math. 34 (7) (2003), 1089–1100.
    • J. K. Kohli and D. Singh, Function spaces and strong variants of continuity, Applied Gen. Top.
    • J. K. Kohli, D. Singh and Rajesh Kumar, Some properties of strongly θ-continuous functions, Communicated.
    • N. Levine, Strongly continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269. http://dx.doi.org/10.2307/2309695
    • B. M. Munshi and D.S. Bassan, Super-continuous mappings, Indian J. Pure Appl. Math. 13 (1982), 229–236.
    • S. A. Naimpally, On strongly continuous functions, Amer. Math. Monthly 74 (1967), 166–168. http://dx.doi.org/10.2307/2315609
    • T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure. Appl. Math. 15 (3) (1984), 241–250.
    • I. L. Reilly and M. K. Vamanamurthy, On super-continuous mappings, Indian J. Pure. Appl. Math. 14 (6) (1983), 767–772.
    • D. Singh, D∗-supercontinuous functions, Bull. Cal. Math. Soc. 94 (2) (2002), 67–76.
    • A. Sostak, On a class of topological spaces containing all bicompact and connected spaces, General Topology and its Relation to Modern Analysis...
    • R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pac. J. Math. 50 (1) (1974), 169–185. http://dx.doi.org/10.2140/pjm.1974.50.169
    • L. A. Steen and J. A. Seeback, Jr., Counter Examples in Topology, Springer Verlag, New York, 1978. http://dx.doi.org/10.1007/978-1-4612-6290-9

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno