India
Basic properties of cl-supercontinuity, a strong variant of continuity, due to Reilly and Vamanamurthy [Indian J. Pure Appl. Math., 14 (1983), 767–772], who call such maps clopen continuous, are studied. Sufficient conditions on domain or range for a continuous function to be cl-supercontinuous are observed. Direct and inverse transfer of certain topological properties under cl-supercontinuous functions are studied and existence or nonexistence of certain cl-supercontinuous function with specified domain or range is outlined.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados