Ir al contenido

Documat


Variance Reduction technique for calculating value at risk in fixed income portfolios

  • Autores: Pilar Abad Romero Árbol académico, Sonia Benito Muela
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 34, Nº. 1, 2010, págs. 21-44
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Financial institutions and regulators increasingly use Value at Risk (VaR) as a standard measure for market risk. Thus, a growing amount of innovative VaR methodologies is being developed by researchers in order to improve the performance of traditional techniques. A variance-covariance approach for ?xed income portfolios requires an estimate of the variance-covariance matrix of the interest rates that determine its value. We propose an innovative methodology to simplify the calculation of this matrix. Specifically, we assume the underlying interest rates parameterization found in the model proposed by Nelson and Siegel (1987) to estimate the yield curve. As this paper shows, our VaR calculating methodology provides a more accurate measure of risk compared to other parametric methods.

  • Referencias bibliográficas
    • Aas, K. and Haff, I. H. (2006). The generalized hyperbolic Skew student’s t-distribution. Journal of Financial Econometrics, 4, 275-309.
    • Albanese, C., K. Jackson and Wiberg, P. (2004). A new Fourier transform algorithm for value-at-risk. Quantitative Finance, 4, 328-338.
    • Alexander, C. O. (2001). “Orthogonal GARCH,” Mastering Risk (C. O. Alexander, Ed.) Volume 2. Financial Times-Prentice Hall, 21-38.
    • Alexander, C. O. and Leigh, C. T. (1997). On the covariance matrices used in value at risk models. Journal of Derivatives, 4, 50-62.
    • Bao, Y., Lee, T.-H. and Saltoglu, B. (2006). Evaluating predictive performance of value at risk models in emerging markets: a reality check....
    • Billio, M. and Pelizzon, L. (2000). Value-at-risk: a multivariate switching regime approach. Journal of Empirical Finance, 7, 531-554.
    • Brooks, C., Clare, A. D., Dalle Molle, J. W. and Persand, G. (2005). A comparison of extreme value theory approaches for determining value...
    • Cabedo, J. D. and Moya, I. (2003). Value at risk calculation through ARCH factor methodology: proposal and comparative analysis. European...
    • Cai, Z. (2002). Regression quantiles for time series. Econometric Theory, 18, 169-192.
    • Cakici, N. and Foster, K. R. (2003). Value at risk for interest rate-dependent securities. Journal of Fixed Income, 12, 81-96.
    • Chong, J. (2004). Value at risk from econometric models and implied from currency options. Journal of Forecasting, 23, 603-620.
    • Christiansen, C. (1999). Value at risk using the factor-ARCH model. Journal of Risk, 1, 65-87.
    • Consigli, G. (2002). Tail estimation and mean-VaR portfolio selection in markets subject to financial instability. Journal Banking and Finance,...
    • Danı́elsson, J. (2002). The emperor has no clothes: limits to risk modelling. Journal Banking of Finance, 26, 1273-1296.
    • Danı́elsson, J. and Vries, C. G. (2000). Value-at-Risk and Extreme Returns, Mimeo, Tinbergen Institute Rotterdam.
    • Fan, J. and Gu, J. (2003). Semiparametric estimation of value at risk. Econometrics Journal, 6, 261-290.
    • Ferenstein, E. and Gasowski, M. (2004). Modelling stock returns with AR-GARCH processes. Statistics and Operations Research Transactions Journal...
    • Glasserman, P., Heidelberger, P. and Shahabuddin, P. (2000). Variance reduction techniques for estimating value-at-risk. Management Science,...
    • Jorion, P. (2000). Value at Risk: The New Benchmark for Managing Financial Risk, published by McGrawHill.
    • Kamdem, J. S. (2005). Value-at-risk and expected shortfall for linear portfolios with elliptically distributed risk factors. International...
    • Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 2, 73-84.
    • Li, M-YL and Lin, H-WW. (2004). Estimating value-at-risk via Markov switching ARCH models-an empirical study on stock index returns. Applied...
    • Linsmeier, T. J. and Pearson, N. D. (2000). Value at risk. Financial Analysts Journal, 56, 47-67.
    • Longford, N. T. (2008). An alternative analysis of variance. Statistics and Operations Research Transactions Journal (SORT), 32, 77-92.
    • McNeil, A. J., Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach....
    • Miller, D. J. and Liu, W. (2006). Improved estimation of portfolio value-at-risk under copula models with mixed marginals. Journal of Futures...
    • Mittnik, S., Paolella, M. S. and Rachev, S. T. (2002). Stationarity of stable power-GARCH processes. Journal of Econometrics, 106, 97-107.
    • Morgan, J. P. (1995). RiskMetrics Technical Document, 3d ed. New York.
    • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach. Econometrica, 59, 347-370.
    • Nelson, C. R. and Siegel, A. F. (1987). Parsimonious modelling of yield curves. Journal of Business, 60, 473-489.
    • Sarma, M., Thomas, S. and Shah, A. (2003). Selection of value at risk models. Journal of Forecasting, 22, 337-358.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno