Ir al contenido

Documat


Modelling Stock Returns with AR-GARCH Processes

  • Autores: E. Ferenstein, M. Gasowski
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 28, Nº. 1, 2004, págs. 55-68
  • Idioma: inglés
  • Títulos paralelos:
    • Modelado de rentabilidades de acciones mediante procesos AR-GARCH.
  • Enlaces
  • Resumen
    • Financial returns are often modelled as autoregressive time series with random disturbances having conditional heteroscedastic variances, especially with GARCH type processes. GARCH processes have been intensely studied in financial and econometric literature as risk models of many financial time series. Analyzing two data sets of stock prices we try to fit AR(1) processes with GARCH or EGARCH errors to the log returns. Moreover, hyperbolic or generalized error distributions occur to be good models of white noise distributions.

  • Referencias bibliográficas
    • Blaesid, P. and Sorensen, M. (1992). ‘Hyp’—a computer program for analyzing data by means of the hyperbolic distribution, Research Report,...
    • Eberlein, E. and Keller, U. (1995). Hyperbolic distributions in finance, Bernoulli, 1, 281-299.
    • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometrica, 50, 987-1008.
    • Bollerslev, T. (1986). Generalised autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327.
    • Ga¸sowski, M. (2002). Modelling financial returns with nonlinear time series from ARCH family processes, M. Sc. Thesis, Warsaw University...
    • Glosten, L. R. et al. (1993). Relationship between the expected value and the volatility of the nominal excess return on stocks, Journal of...
    • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach, Econometrica, 59, 347-370.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno