En este capítulo se expone una forma de introducir la modelación al aula de matemáticas. Esta experiencia se basa en la reflexión sobre su compatibilidad y su interrelación natural con la enseñanza de las matemáticas en términos de los postulados de la teoría Acción, Proceso, Objeto, Esquema (APOE). Se discute y ejemplifica cómo esta introducción de la modelación promueve la construcción del conocimiento matemático. Se subraya el relevante papel de las actividades diseñadas con base en una descomposición genética (DG), del trabajo colaborativo de los estudiantes y del papel del profesor en el desarrollo del modelo, así como en la promoción de las ideas y el conocimiento de los estudiantes. Se presenta, como ejemplo, un péndulo como modelo interdisciplinario. El modelo se desarrolló en un curso de ecuaciones diferenciales para estudiantes de ingeniería en la universidad. Los resultados obtenidos del análisis de la experiencia dan evidencia del valor de las ideas de los estudiantes y sobre el papel del profesor.
A way to introduce the use of modeling in the mathematics classroom is presented in this chapter. This experience is based on reflection about its compatibility and its natural interrelation to mathematics teaching in terms of Action, Process, Object, Schema (APOS) theory postulates. The role of modeling is discussed and exemplified in terms of its possibility to promote knowledge construction. The role of the activities, designed with a genetic decomposition, that of collaborative teamwork and the teachers role in the model’s development and in the emergence of students’ ideas is underlined. An interdisciplinary model is presented as an example: a pendulum. The model was used in a differential equations course for engineering students at the university. Results from the analysis of this experience data give evidence of the value of students’ ideas and the teacher’s role.
© 2008-2026 Fundación Dialnet · Todos los derechos reservados