Ir al contenido

Documat


Evaluación de la Razonabilidad Numérica en alumnado de secundaria

  • Macarena Fariña [1] ; Alicia Bruno [1] Árbol académico
    1. [1] Universidad de La Laguna

      Universidad de La Laguna

      San Cristóbal de La Laguna, España

  • Localización: Educación matemática, ISSN-e 0187-8298, ISSN 1665-5826, Vol. 37, Nº. 2, 2025, págs. 171-199
  • Idioma: español
  • DOI: 10.24844/EM3702.06
  • Títulos paralelos:
    • Assessment of Numerical Reasonableness in secondary school students
  • Enlaces
  • Resumen
    • español

      Este trabajo analiza cómo alumnado de secundaria (13-14 años) evalúa si el resultado de una repuesta numérica es razonable. Se realizó una prueba escrita con cinco actividades en las que aparecen operaciones con números decimales y fracciones. Las actividades están diseñadas para que el alumnado pueda utilizar justificaciones diferentes para evaluar la razonabilidad numérica. Entre estas justificaciones tenemos la adecuación al contexto, el cálculo operatorio, la estimación numérica y la estimación gráfica. También se analiza la seguridad que manifiesta el alumnado con su respuesta. Los resultados indican que la evaluación de la razonabilidad numérica y la seguridad de las repuestas varía según el tipo de actividades y que el alumnado es capaz de evaluar con seguridad la razonabilidad de una actividad numérica, aunque recurre mayoritariamente al uso de cálculos exactos por encima de otros tipos de justificaciones. Este resultado pone de manifiesto la importancia de fomentar en el alumnado el uso de diferentes estrategias para evaluar si una respuesta numérica es razonable

    • English

      This paper analyzes how secondary school students (13-14 years old) evaluate the result of a numerical answer in a reasonable way. A written test was conducted with five activities involving operations with decimal numbers and fractions. The activities were designed for students to employ different justifications to assess numerical reasonableness. These justifications include contextual appropriateness, operative calculation, numerical estimation, and graphical estimation. It also examines the confidence expressed by the students in the answers they have provided. The results indicate that the assessment of numerical reasonableness and confidence in responses varies according to the type of activities and students can assess the reasonableness of numerical tasks with confidence, although they mainly resort to the use of exact calculations over other types of justifications. This result highlights the importance of encouraging students to use different strategies to assess numerical reasonableness.

  • Referencias bibliográficas
    • Akkaya, R. (2016). An investigation into the number sense performance of secondary school students in Turkey. Journal of Education and Training...
    • Alajmi, A., y Reys, R. (2007). Reasonable and reasonableness of answers: Kuwaiti middle school teachers’ perspectives. Educational Studies...
    • Alajmi, A. H. (2009). Addressing computational estimation in the Kuwaiti curriculum: Teachers’ views. Journal of Mathematics Teacher Education,...
    • Alajmi, A., y Reys, R. (2010). Examining eighth grade Kuwaiti students’ recognition and interpretation of reasonable answers. International...
    • Almeida, R., y Bruno, A. (2016). Uso de puntos de referencia y de representaciones gráficas para resolver tareas numéricas en secundaria....
    • Almeida, R., y Bruno, A. (2017). Establishing profiles on the use of number sense. REDIMAT, 6(1), 56-84. https://doi.org/10.17583/redimat.2017.1910 Bell,...
    • Caleon, I., y Subramaniam, R. (2010). Development and application of three-tier diagnostic test to assess secondary students’ understanding...
    • Clarke, D. M., Clarke, D. J., y Sullivan, P. (2012). Reasoning in the Australian curriculum: Understanding its meaning and using the relevant...
    • Cramer, K., Wyberg, T., y Leavitt, S. (2018). The role of representations in fraction addition and subtraction. Mathematics Teaching in the...
    • Fariña, M., y Bruno, A. (2021). Respuestas numéricas razonables en alumnado de secundaria. En P. D. Diago, D. F. Yáñez, M. T. González-Astudillo,...
    • Graeber, A. O., Tirosh, D., y Glover, R. (1989). Preservice teachers’ misconceptions in solving verbal problems in multiplication and division....
    • Grayer, M. (2009). Reasonable or not? A study of the use of teacher questioning to promote reasonable mathematical answers from sixth grade...
    • McIntosh, A., Reys, B. J., y Reys, R. E. (1992). A proposed framework for examining basic number sense. For the Learning of Mathematics, 12(3),...
    • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. National Council of Teachers...
    • Reys, B. J., y Yang, D. C. (1998). Relationship between computational performance and number sense among sixth and eighth grade students in...
    • Sianturi, I. A. J., Ismail, Z., y Yang, D. C. (2024). Examining fifth graders’ conceptual understanding of numbers and operations using an...
    • Vamvakoussi, X., Van Dooren, W., y Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias...
    • Veloo, P. K. (2010). The development of number sense and mental computation proficiencies: An intervention study with secondary one students...
    • Yang, D. C. (2003). Teaching and learning number sense – An intervention study of fifth grade students in Taiwan. International Journal of...
    • Yang, D. C. (2022). Investigating the differences between confidence ratings in the answer and reason tiers in fourth graders via online four-tier...
    • Yang, D. C., y Sianturi, I. A. J. (2019a). Sixth grade students’ performance, misconceptions, and confidence when judging the reasonableness...
    • Yang, D. C., y Sianturi, I. A. J. (2019b). Assessing students’ conceptual understanding using an online three-tier diagnostic test. Journal...
    • Yang, D. C., y Sianturi, I. A. J. (2021). Sixth grade students’ performance, misconception, and confidence on a three-tier number sense test....
    • Foster, C. (2016). Confidence and competence with mathematical procedures. Educational Studies in Mathematics, 91, 271-288. https://doi.org/10.1007/s10649-015-9660-9
    • González-Forte, J. M., Fernández, C., Van Hoof, J., y Van Dooren, W. (2023). Incorrect ways of thinking about the size of fractions. International...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno