Ir al contenido

Documat


Invariant Solutions and Dynamics of Soliton to Coupled Burgers Equations

  • Dig Vijay Tanwar [2] ; Raj Kumar [1] ; Nidhi Asthana [1]
    1. [1] Veer Bahadur Singh Purvanchal University

      Veer Bahadur Singh Purvanchal University

      India

    2. [2] Graphic Era (Deemed to be University)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This research is carried out exploiting the similarity transformations method (STM) to solve coupled Burgers equations (CBEs). Since we have attained a new set of analytical solutions that are different from those reported before (Bai, C.L.: The exact solution of the Burgers equation and higher order Burgers equation in (2+1)-dimensions. Chinese Phys. 10, 1091–1095 (2001), Peng, Y., Yomba, E.: New applications of the singular manifold method to the (2+1)-dimensional Burgers equations. Appl. Math. Comput.

      150, 61–67 (2006), Wazwaz, A.M.: A study on the (2+1)-dimensional and the (2+1)- dimensional higher-order Burgers equations. Appl.Math. Lett. 25, 1495–1499 (2012)), all the solutions thus obtained for CBEs are original. The CBEs are used in various fields to represent fluids that have changing densities, especially in fluid mechanics, shock waves, gas behavior, heat transfer, sound transmission, plasma science, and traffic flows, where nonlinear effects play a significant role. The analytical solutions are followed by symmetry reductions under one-parameter Lie group transformations.

      The adjoint equations and conserved quantities under Lagrangian formulation are presented to prove integrability. The solutions reflect different types of wave patterns, including doubly soliton, periodic, multisoliton on a periodic surface, and soliton interactions. The inclusion of arbitrary functions and constants gives worthiness and future scope to these solutions. These solutions are critical and may involve research into plasma physics, fiber optics, fluid dynamics, biological systems, material science, and quantum field theory.

  • Referencias bibliográficas
    • 1. Burgers, J.M.: The Nonlinear Diffusion Equation. Reidel, Dordrecht (1974)
    • 2. Kumar, M., Kumar, R.: Some more solutions of Burgers’ equation. J. Phys.: Conf. Ser. 574, 012038(1– 5) (2015)
    • 3. Kumar, R., Kumar, M, Tiwari, A.K.: Dynamics of some more invariant solutions of (3+1)-Burgers system. Int. J. Comput. Methods Eng....
    • 4. Christou, M.A., Ivanova, N.M., Sophocleous, C.: Similarity reductions of the (1+3)-dimensional Burgers equation. Appl. Math. Comput....
    • 5. Kumar, R., Pandey, K.S., Kumar, A.: Dynamical behavior of the solutions of coupled BoussinesqBurgers equations occurring at the seaside...
    • 6. Tanwar, D.V.: Lie symmetry reductions, exact solutions and soliton dynamics to Burgers equation. Nonlinear Dyn. 112(4), 22267–22281 (2024)
    • 7. Tanwar, D.V., Wazwaz, A.M.: Lie symmetries and exact solutions of KdV-Burgers equation with dissipation in dusty plasma. Qual. Theory Dyn....
    • 8. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)
    • 9. Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, New York (1974)
    • 10. Kumar, R., Pandey, K.S., Kumar, A., Kumar, A.: Novel traveling wave solutions of Jaulent-Miodek equations and coupled Konno-Oono systems...
    • 11. Kumar, R., Pandey, K.S., Yadav, S.K., Kumar., A.: Some more variety of analytical solutions to (2+1)- Bogoyavlensky-Konopelchenko...
    • 12. Kumar, R., Verma, R.S.: Dynamics of invariant solutions of mKdV-ZK arising in a homogeneous magnetised plasma. Nonlinear Dyn. 108(4),...
    • 13. Tanwar, D.V., Sahu, P.K.: Dynamics of one-dimensional motion of a gas under the influence of monochromatic radiation. Qual. Theory Dyn....
    • 14. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Lie group analysis for a (2+1)-dimensional generalized modified dispersive water-wave...
    • 15. Anukriti.,Tanwar, D.V.: Lie symmetry reductions and exact solutions of Kadomtsev–Petviashvili equation. Pramana. 99(7), 35(1–13) (2025)
    • 16. Tanwar, D.V., Ray, A.K., Chauhan, A.: Lie symmetries and dynamical behavior of soliton solutions of KP-BBM equation. Qual. Theory Dyn....
    • 17. Tanwar, D.V., Kumar, R.: Kinks and soliton solutions to the coupled Burgers equation by Lie symmetry approach. Phys. Scr. 99(7), 075223(1–19),...
    • 18. Asghar, U., Asjad, M.I., Faridi, W.A., Akgül, A.: Novel solitonic structure, Hamiltonian dynamics and lie symmetry algebra of biofilm....
    • 19. El-Shiekh, R.M., Ghani, A., Al-Nowehy, A.A.H.: Symmetries, reductions and different types of travelling wave solutions for symmetric coupled...
    • 20. El-Shiekh, R.M., Gaballah, M.: Lie group analysis and novel solutions for the generalized variablecoefficients Sawada-Kotera equation....
    • 21. Gaballah, M., El-Shiekh, R.M.: Symmetry transformations and novel solutions for the graphene thermophoretic motion equation with variable...
    • 22. El-Shiekh, R., Gaballah, M.: Bright and dark optical chirp waves for Kundu-Eckhaus equation using Lie group analysis. Zeitschrift für...
    • 23. El-Shiekh, R.M.: Novel solitary and shock wave solutions for the generalized variable-coefficients (2+1)-dimensional KP-Burger equation...
    • 24. Tipu, G.H., Faridi, W.A., Alshehri, M., Yao, F.: The propagation of hyper-geometric optical soliton waves in plasma dynamics for the integrable...
    • 25. Faridi, W.A., Iqbal, M., Ramzan, B., AlQahtani, S.A., Osman, M.S., Akinyemi, L., Mostafa, A.M.: The formation of invariant optical soliton...
    • 26. Faridi, W.A., Wazwaz, A.M., Mostafa, A.M., Myrzakulov, R., Umurzakhova, Z.: The Lie point symmetry criteria and formation of exact analytical...
    • 27. Rizvi, Syed T.R., Ali, K., Akram, U., Abbas, Syed O. , Bekir, A., Seadawy, A.R.: Stability analysis and solitary wave solutions for Yu...
    • 28. Borhan, J.R.M., Ganie, A.H., Miah, M.M., Iqbal, M.A., Seadawy, Aly R., Mishra„ N.K.: A highly effective analytical approach to innovate...
    • 29. Chen, L.L., Lou, S.Y.: Painlevé analysis of a (2+1)-dimensional Burgers equation. Commun. Theor. Phys. 29, 313–316 (1998)
    • 30. Gerdjikov, V.S., Vilasi, G., Yanovski, A.B.: Integrable Hamiltonian Hierarchies: Spectral and Geometric Methods, 748. Springer, Berlin...
    • 31. Wazwaz, A.M.: Multiple kink solutions and multiple singular kink solutions for the (2+1)-dimensional Burgers equations. Appl. Math....
    • 32. Dai, C.Q., Wang, Y.Y.: New exact solutions of the (3+1)-dimensional Burgers system. Phys. Lett. A: Gen. At. Solid State Phys. 373(2),...
    • 33. Faridi, W.A., Jhangeer, A., Riaz, M.B., Asjad, M.I., Muhammad, T.: The fractional soliton solutions of the dynamical system of equations...
    • 34. Webb, G.M., Zank. G.P.: Painlevé analysis of the three-dimensional Burgers equation. Phys. Lett. A. 150(1), 14–22 (1990)
    • 35. Shakeel, M., Mohyud-Din, S.T.: A novel (G /G)-expansion method and its application to the (3+1)- dimensional Burgers equations. Int....
    • 36. Wang, Q., Chen, Y., Zhang, H.: A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation....
    • 37. Zhou, J., Liu, X., Yang, X., Liu, Y.: Novel soliton-like and multi-solitary wave solutions of (3+1)- dimensional Burgers equation....
    • 38. Wazwaz, A.M.: New (3+1)-dimensional nonlinear evolution equations with Burgers and SharmaTasso-Olver equations constituting the main...
    • 39. Bai, C.L.: The exact solution of the Burgers equation and higher order Burgers equation in (2+1)- dimensions. Chinese Phys. 10, 1091–1095...
    • 40. Peng, Y., Yomba, E.: New applications of the singular manifold method to the (2+1)-dimensional Burgers equations. Appl. Math. Comput....
    • 41. Wazwaz, A.M.: A study on the (2+1)-dimensional and the (2+1)-dimensional higher-order Burgers equations. Appl. Math. Lett. 25,...
    • 42. Wazwaz, A.M.: A study on a (2+1)-dimensional and a (3+1)-dimensional generalized Burgers equation. Appl. Math. Lett. 31, 41–45...
    • 43. Ibragimov, N.H.: A new conservation theorem. J. Math. Anal. Appl. 333, 311–328 (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno