Ir al contenido

Documat


Relative Controllability and Finite Interval Stability of Impulsive Fractional Order Switched Delay Differential System with Nonlinear Perturbation

  • Autores: P. K. Lakshmi Priya, K. Kaliraj
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The manuscript examines a class of switched fractional order system with time-varying delays occurring at different time instant in the state and control input. Initially, we substantiate the relative controllability of the nonlinear system by incorporating the technique of delayed Mittag–Leffler function to construct the Grammian matrices. In addition to this, fixed point argument is utilized to manipulate the required controllability criteria of the system. Further, the necessary bound for the finite time stability of the system is estimated by implementing Gronwall’s integral inequality. Conclusively, we establish the application of our theoretical study by providing illustrative examples.

  • Referencias bibliográficas
    • 1. Ai, Z., Peng, L.: Stabilization and robustness analysis of multi-module impulsive switched linear systems. Nonlinear Anal.: Hybrid Syst....
    • 2. Arockia Samy, S., Cao, Y., Ramachandran, R., Alzabut, J., Niezabitowski, M., Lim, C.P.: Globally asymptotic stability and synchronization...
    • 3. Balachandran, K., Govindaraj, V., Rodríguez-Germá, J.J., Trujillo,: Controllability results for nonlinear fractional-order dynamical systems....
    • 4. Balasubramaniam, P., Sathiyaraj, T., Priya, K.: Exponential stability of nonlinear fractional stochastic system with Poisson jumps. Stochastics...
    • 5. Cerma`k, J., Hornicek ˜ , J., Kisela, T,: Stability regions for fractional differential systems with a time delay. Commun. Nonlinear...
    • 6. Elshenhab, A.M., Wang, X.T.: Representation of solutions for linear fractional systems with pure delay and multiple delays. Math. Methods...
    • 7. Fecˇkan, M., Zhou, Y., Wang, J. R.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear...
    • 8. Feng, T., Guo, L., Wu, B., Chen, Y.Q.: Stability analysis of switched fractional-order continuous-time systems. Nonlinear Dyn. 102, 2467–2478...
    • 9. Feng, J., Wu, J., Li, Z., Zhan, X.: Distributed finite-time and fixed-time containment control for nonlinear multi-agent systems under...
    • 10. Guan, Z.H., Wang, L.: Target controllability of multi-agent systems under fixed and switching topologies. Int. J. Robust Nonlinear Control...
    • 11. Huang, J., Luo, D.: Relatively exact controllability of fractional stochatic delay system driven by Le˜vy noise. Math. Methods Appl. Sci....
    • 12. Huang, J., Ma, X., Che, H., Han, Z.: Further results on interval observer design for discrete-time switched systems and application to...
    • 13. Kacorek, T.: Stability of positive fractional switched continuous-time linear systems. Bull. Polish Acad. Sci. 61(2), 349–352 (2013)
    • 14. Kaliraj, K., Lakshmi Priya, P.K., Nieto, J.J.: Finite-interval stability analysis of impulsive fractionaldelay dynamical system. Fractal...
    • 15. Kumar, V., Kostic, M., Tridane, A., Debbouche, A.: Controllability of switched Hilfer neutral fractional dynamic systems with impulses....
    • 16. Kumar, V., Malik, M., Baleanu, D.: Results on Hilfer fractional switched dynamical systems with non-instantaneous impulses. Paramana J....
    • 17. Lakshmi Priya, P.K., Kaliraj, K.: Scrutinization of finite time stability of fractional impulsive neutral model with disturbance. ISA...
    • 18. Luo, H.P., Liu, S.: Relative controllability of nonlinear switched fractional delayed systems. Commun. Nonlinear Sci. Numer. Simul. 119,...
    • 19. Liang, J., Wu, B., Lu, L., Wang, Y.E., Li, C.: Finite-time stability and finite-time boundedness of fractional order switched systems....
    • 20. Liu, X., Zhong, S., Ding, X.: Robust exponential stability of impulsive switched systems with switching delays: A Razumikhin approach....
    • 21. Li, M., Wang, J.R.: Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential...
    • 22. Li, M., Wang, J.R.: Finite time stability and relative controllability of Riemann-Liouville fractional delay differential equations. Math....
    • 23. Lv, Z., Chen, B.: Existence and uniqueness of positive solutions for a fractional switched system. Abstr. Appl. Anal. 70, 1–7 (2014)
    • 24. Makhlouf, A.B., Baleanu, D.: Finite time stability of fractional order systems of neutral type. Fractal Fract. 6, 96 (2022). https://doi.org/10.3390/fractalfract6060289
    • 25. Mur, T., Henriquez, H.R.: Relative controllability of linear systems of fractional order with delay. Math. Control Relat. Fields 5(4),...
    • 26. Muni, V.S., Govindaraj, V., George, R.K.: Controllability of fractional order semilinear systems with a delay in control. Indian J. Math....
    • 27. Meng, Q., Yang, H., Jiang, B.: Small-time local controllability of switched nonlinear systems. IEEE Trans. Autom. Control 66(11), 5422–5428...
    • 28. Panneer Selvam, A., Govindaraj, V.: Controllability of fractional dynamical systems with distributed delays in control using ψ− Caputo...
    • 29. Panneer Selvam, A., Govindaraj, V.: Controllability of fractional dynamical systems having multiple delays in control with ψ-Caputo fractional...
    • 29. Possieri, C., Teel, A.R.: Structural properties of a class of linear hybrid systems and output feedback stabilization. IEEE Trans. Autom....
    • 31. Pospisil, M.: Relative of controllability of neutral differential equations with a delay. SIAM J. Control Optim. 55(2), 835–855 (2017)
    • 32. Pratap, A., Raja, R., Agarwal, R.P., Alzabut, J., Niezabitowski, M., Hincal, E.: Further results on asymptotic and finite-time stability...
    • 33. Ren, W., Xiong, J.: Stability analysis of stochastic impulsive switched systems with deterministic state dependent impulses and switches....
    • 34. Sayooj, A.B., Raja, R., Jinde, C., Jehad, A., Michal, N., Valentina, E.B.: Stability analysis and comparative study on different eco-epidemiological...
    • 35. Shu, Y., Li, B.: Existence and uniqueness of solutions to uncertain fractional switched systems with an uncertain stock model. Chaos Solitons...
    • 36. Smart, D.R.: Fixed point theorems, Cambridge University Press, (1980)
    • 37. Thaiprayoon, C., Sudsutad, W., Alzabut, J., Etemad, S., Rezapour, S.: On the qualitative analysis of the fractional boundary value problem...
    • 38. Wang, Q., Lu, D., Fang, Y.: Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 40, 1–6 (2015)
    • 39. Wang, J.R., Fecˇkan, M., Zhou, Y.: Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions....
    • 40. Yan, J., Hu, B.Z., Guan, H.: Controllability of nonlinear impulsive and switching systems with input delay. IEEE Trans. Autom. Control...
    • 41. Yan, H., Zhang, J.X., Zhang, X.: Injected infrared and visible image fusion via L1 decomposition model and guided filtering. IEEE Trans....
    • 42. You, Z.: On the exponential stability of nonlinear delay system with impulses. J. Math. Control Inf. 35(3), 1–31 (2017)
    • 43. You, Z., Wang, J.R.: Stability of impulsive delay differential equations. J. Appl. Math. Comput. 56, 253–268 (2018)
    • 44. Zada, A., Pervaiz, B., Subramanian, M., Popa, I.L.: Finite time stability for nonsingular impulsive first order delay differential systems....
    • 45. Zhang, D.X., Yan, J., Hu, B., Hong Guan, Z., Zheng, D.F.: Controllability on a class of switched time-varying systems with impulses and...
    • 46. Zhang, J.X., Xu, K.D., Wang, Q.G.: Prescribed performance tracking control of time-delay nonlinear systems with output constraints. IEEE/CAA...
    • 47. Zhang, J.X., Yang, T., Chai, T.: Neural network control of underactuated surface vehicles with prescribed trajectory tracking performance....
    • 48. Zhang, X., Boutat, D., Liu, D.: Applications of fractional operator in image processing and stability of control systems. Fractal Fract....
    • 49. Zhang, X., Li, C., Huang, T.: Impacts of state-dependent impulses on the stability of switching CohenGrossberg neural networks. Adv. Differ....
    • 50. Zhao, S., Zhang, Z., Wang, T., Yu, W.: Controllability for a class of time-varying controlled switching impulsive systems with time delays....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno