Ir al contenido

Documat


Controllability Results for Ã-Caputo Fractional Differential Systems with Impulsive Effects

  • Anjapuli Panneer Selvam [1] ; Venkatesan Govindaraj [1]
    1. [1] National Institute Of Technology

      National Institute Of Technology

      Japón

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01027-7
  • Enlaces
  • Resumen
    • The main goal of this study is to use the ψ-Caputo fractional derivative of order ϑ ∈ (0, 1) to construct the criteria for controllability in non-instantaneous impulsive dynamical systems. To obtain the necessary and sufficient conditions for the controllability of linear fractional systems by incorporating the positiveness of the Grammian matrices. To obtain sufficient conditions for controllability criteria for nonlinear systems, we have used Schaefer’s fixed point theorem. To enhance comprehension of the theoretical findings, several numerical examples have been provided.

  • Referencias bibliográficas
    • 1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science...
    • 2. Debnath, L.: A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 35(4), 487–501 (2004)
    • 3. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific (2000)
    • 4. Dokuyucu, M.A.: Analysis of a novel finance chaotic model via ABC fractional derivative. Numer. Methods Partial Differ. Equ. 37(2), 1583–1590...
    • 5. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)
    • 6. Area, I., Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W., Torres, Á.: On a fractional order Ebola epidemic model. Adv. Differ. Equ....
    • 7. Khan, H., Alzabut, J., Tunç, O., Kaabar, M.K.: A fractal-fractional COVID-19 model with a negative impact of quarantine on diabetic patients....
    • 8. Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of C D4+ T-cell with a new approach of fractional...
    • 9. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and...
    • 10. Sofuoglu, Y., Ozalp, N.: Fractional order bilingualism model without conversion from dominant unilingual group to bilingual group. Differ....
    • 11. Begum, R., Tunç, O., Khan, H., Gulzar, H., Khan, A.: A fractional order Zika virus model with Mittag– Leffler kernel. Chaos Solitons Fractals...
    • 12. Almeida, R., Bastos, N.R., Monteiro, M.T.T.: Modeling some real phenomena by fractional differential equations. Math. Methods Appl. Sci....
    • 13. Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due...
    • 14. Hussain, S., Tunç, O., Ur Rahman, G., Khan, H., Nadia, E.: Mathematical analysis of stochastic epidemic model of MERS-corona & application...
    • 15. Simeonov, P.S., Bainov, D.D.: Stability with respect to part of the variables in systems with impulse effect. J. Math. Anal. Appl. 117(1),...
    • 16. Debbouche, A., Baleanu, D.: Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems....
    • 17. Lupulescu, V., Younus, A.: On controllability and observability for a class of linear impulsive dynamic systems on time scales. Math....
    • 18. Kumar, V., Malik, M.: Controllability results of fractional integro-differential equation with noninstantaneous impulses on time scales....
    • 19. Kumar, V., Stamov, G., Stamova, I.: Controllability results for a class of piecewise nonlinear impulsive fractional dynamic systems. Appl....
    • 20. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481...
    • 21. Panneer Selvam, A., Vellappandi, M., Govindaraj, V.: Controllability of fractional dynamical systems with ψ-Caputo fractional derivative....
    • 22. Shah, K., Abdalla, B., Abdeljawad, T., Gul, R.: Analysis of multipoint impulsive problem of fractionalorder differential equations. Bound....
    • 23. Wang, J., Zhou, Y., Lin, Z.: On a new class of impulsive fractional differential equations. Appl. Math. Comput. 242, 649–657 (2014)
    • 24. Kumar, V., Malik, M., Debbouche, A.: Stability and controllability analysis of fractional damped differential system with non-instantaneous...
    • 25. Lakshmikantham, V., Simeonov, P.S.: Theory of Impulsive Differential Equations, vol. 6. World Scientific (1989)
    • 26. Raja, M.M., Vijayakumar, V., Udhayakumar, R.: A new approach on approximate controllability of fractional evolution inclusions of order...
    • 27. He, B.B., Zhou, H.C., Kou, C.H.: The controllability of fractional damped dynamical systems with control delay. Commun. Nonlinear Sci....
    • 28. Li, M., Debbouche, A., Wang, J.: Relative controllability in fractional differential equations with pure delay. Math. Methods Appl. Sci....
    • 29. Zhang, X., Zhu, C., Yuan, C.: Approximate controllability of impulsive fractional stochastic differential equations with state-dependent...
    • 30. Sikora, B., Klamka, J.: Constrained controllability of fractional linear systems with delays in control. Syst. Control Lett. 106, 9–15...
    • 31. Govindaraj, V., George, R.K.: Controllability of fractional dynamical systems: a functional analytic approach. Math. Control Relat. Fields...
    • 32. Sher, M., Shah, K., Khan, Z.A.: Study of time-fractional order problems with proportional delay and controllability term via fixed point...
    • 33. Balachandran, K., Govindaraj, V., Rivero,M., Trujillo, J.J.: Controllability of fractional damped dynamical systems. Appl. Math. Comput....
    • 34. Debbouche, A., Torres, D.F.: Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces. Int. J. Control...
    • 35. Moonsuwan, S., Rahmat, G., Ullah, A., Khan, M.Y.: & Shah, K. Hyers–Ulam stability, exponential stability, and relative controllability...
    • 36. Hussain, S., Sarwar, M., Nisar, K.S., Shah, K.: Controllability of fractional differential evolution equation of order γ ∈ (1, 2) with...
    • 37. Khan, A., Khan, H., Gómez-Aguilar, J.F., Abdeljawad, T.: Existence and Hyers–Ulam stability for a nonlinear singular fractional differential...
    • 38. Bedi, P., Kumar, A., Abdeljawad, T., Khan, Z.A., Khan, A.: Existence and approximate controllability of Hilfer fractional evolution equations...
    • 39. Bedi, P., Kumar, A., Khan, A.: Controllability of neutral impulsive fractional differential equations with Atangana–Baleanu–Caputo derivatives....
    • 40. George, R., Al-shammari, F., Ghaderi, M., Rezapour, S.: On the boundedness of the solution set for the ψ-Caputo fractional pantograph...
    • 41. Boutiara, A., Benbachir, M., Alzabut, J., Samei, M.E.: Monotone iterative and upper-lower solution techniques for solving the nonlinear...
    • 42. Baitiche, Z., Derbazi, C., Alzabut, J., Samei, M.E., Kaabar, M.K., Siri, Z.: Monotone iterative method for ψ-Caputo fractional differential...
    • 43. Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos...
    • 44. Derbazi, C., Baitiche, Z., Benchohra, M.: Cauchy problem with ψ-Caputo fractional derivative in Banach spaces. Adv. Theory Nonlinear Anal....
    • 45. Wahash, H.A., Mohammed, S.A., Panchal, S.K.: Existence and stability of a nonlinear fractional differential equation involving a ψ-Caputo...
    • 46. Smart, D.R.: Fixed Point Theorems, vol. 66. CUP Archive (1980)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno