Ir al contenido

Documat


Limit Cycles in Planar Piecewise Linear Differential Systems with Multiple Switching Curves

  • Ranran Jia [1] ; Liqin Zhao [1]
    1. [1] Beijing Normal University

      Beijing Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we provide the lower bound and upper bound of the maximum number of limit cycles Z(n) that planar piecewise linear differential systems with two zones separated by the curves y = ±x3(x > 0) under perturbation of arbitrary polynomials of x, y with degree n can have, where n ∈ N. By the first two order Melnikov functions, we achieve that 7 ≤ Z(1) ≤ 12, Z(2) = 5, Z(n) ≥ 3n for any n ≥ 3, and Z(n) ≤ 13n 2 + 11 when n is even, while Z(n) ≤ 13(n−1) 2 + 21 when n is odd.

  • Referencias bibliográficas
    • 1. Li, T., Llibre, J.: On the 16th Hilbert problem for discontinuous piecewise polynomial Hamiltonian systems. J. Dyn. Differ. Equ. 35(1),...
    • 2. Llibre, J., Mereu, A.C., Novaes, D.D.: Averaging theory for discontinuous piecewise differential systems. J. Differ. Equ. 258(11), 4007–4032...
    • 3. Llibre, J., Novaes, D.D., Teixeira, M.A.: On the birth of limit cycles for non-smooth dynamical systems. Bull. Sci. Math. 139(3), 229–244...
    • 4. Liu, X., Han, M.: Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Int. J. Bifurc. Chaos 20(5), 1379–1390 (2010)....
    • 5. Liu, S., Han, M., Li, J.: Bifurcation methods of periodic orbits for piecewise smooth systems. J. Differ. Equ. 275, 204–233 (2021). https://doi.org/10.1016/j.jde.2020.11.040
    • 6. Tian, H., Han, M.: Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete Contin. Dyn....
    • 7. Yang, P., Françoise, J.-P., Yu, J.: Second order Melnikov functions of piecewise Hamiltonian systems. Int. J. Bifurc. Chaos 30(1), 2050016...
    • 8. Si, Z., Zhao, L.: The number of limit cycles of a kind of piecewise quadratic systems with switching curve y = xm. J. Math. Anal. Appl....
    • 9. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Pergamon Press, Oxford, New York, Toronto (1966)
    • 10. Han, M., Yang, J.: The maximum number of zeros of functions with parameters and application to differential equations. J. Nonlinear Model....
    • 11. Zou, L., Zhao, L., Wang, J.: The exact bound of the number of limit cycles bifurcating from the global nilpotent center with a nonlinear...
    • 12. Buzzi, C., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete Contin. Dyn. Syst. 33(9), 3915–3936...
    • 13. Andrade, Kd.S., Cespedes, O.A.R., Cruz, D.R., Novaes, D.D.: Higher order Melnikov analysis for planar piecewise linear vector fields with...
    • 14. Cardin, P.T., Torregrosa, J.: Limit cycles in planar piecewise linear differential systems with nonregular separation line. Phys. D 337,...
    • 15. Yang, P., Yang, Y., Yu, J.: Up to second order Melnikov functions for general piecewise Hamiltonian systems with nonregular separation...
    • 16. Bastos, J.L.R., Buzzi, C.A., Llibre, J., Novaes, D.D.: Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold....
    • 17. Guo, Z., Llibre, J.: Non-equivalence between the Melnikov and the averaging methods for nonsmooth differential systems. Qual. Theory Dyn....
    • 18. Zhao, L., Si, Z., Jia, R.: Up to the first two order Melnikov analysis for the exact cyclicity of planar piecewise linear vector fields...
    • 19. Yang, J.: Limit cycles appearing from the perturbation of differential systems with multiple switching curves. Chaos Solitons Fractals...
    • 20. Wang, J., Zhao, L., Zhou, J.: On the number of limit cycles bifurcating from the linear center with an algebraic switching curve. Qual....
    • 21. Grau, M., Mañosas, F., Villadelprat, J.: A Chebyshev criterion for abelian integrals. Trans. Am. Math. Soc. 363(1), 109–129 (2011). https://doi.org/10.1090/S0002-9947-2010-05007-X
    • 22. Mañosas, F., Villadelprat, J.: Bounding the number of zeros of certain Abelian integrals. J. Differ. Equ. 251(6), 1656–1669 (2011). https://doi.org/10.1016/j.jde.2011.05.026
    • 23. Novaes, D.D., Torregrosa, J.: On extended Chebyshev systems with positive accuracy. J. Math. Anal. Appl. 448(1), 171–186 (2017). https://doi.org/10.1016/j.jmaa.2016.10.076
    • 24. Li, C., Zhang, Z.: Remarks on 16th weak Hilbert problem for n = 2. Nonlinearity 15(6), 1975–1992 (2002). https://doi.org/10.1088/0951-7715/15/6/310
    • 25. Coll, B., Gasull, A., Prohens, R.: Bifurcation of limit cycles from two families of centers. Dyn. Contin. Discrete Impuls. Syst. Ser....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno