Ir al contenido

Documat


On the Number of Limit Cycles Bifurcating from the Linear Center with an Algebraic Switching Curve

  • Jiaxin Wang [1] ; Liqin Zhao [1] ; Jinping Zhou [1]
    1. [1] Beijing Normal University

      Beijing Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper studies the perturbations of system x˙=y, y˙=−x under arbitrary polynomial perturbations with switching curve y=xm, where m is a positive integer. By analysing the first order Melnikov function, we obtain the lower bound and upper bound of the maximum number of limit cycles bifurcating from the period annulus if the first order Melnikov function is not identically 0.

  • Referencias bibliográficas
    • 1. Andrade, K., Cespedes, O., Cruz, D., Novaes, D.: Higher order Melnikov analysis for planar piecewise linear vector fields with nonlinear...
    • 2. Bastos, J., Buzzi, C.A., Llibre, J., Novaes, D.D.: Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold....
    • 3. Carvalho, T., Llibre, J., Tonon, D.: Limit cycles of discontinuous piecewise polynomial vector fields. J. Math. Anal. Appl. 449, 572–579...
    • 4. Cen, X., Liu, C., Yang, L., Zhang, M.: Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential...
    • 5. Coll, B., Gasull, A., Prohens, R.: Bifurcation of limit cycles from two families of centers. Dyn. Contin. Discrete Impuls. Syst. Ser. A...
    • 6. Françoise, J.P., Ji, H., Xiao, D., Yu, J.: Global dynamics of a piecewise smooth system for brain Lactate metabolism. Qual. Theory Dyn....
    • 7. Gasull, A., Torregrosa, J., Zhang, X.: Piecewise linear differential systems with an algebraic line of separation. Electron. J. Differ....
    • 8. Grau, M., Mañosas, F., Villadelprat, J.: A Chebyshev criterion for Abelian integrals. Trans. Am. Math. Soc. 363, 109–129 (2011)
    • 9. Han, M., Sheng, L.: Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J. Appl. Anal. Comput. 5, 809–815 (2015)
    • 10. Han, M., Yang, J.: The maximum number of zeros of functions with parameters and application to differential equations. Journal of Nonlinear...
    • 11. Han,M., Romanovski, V.G., Zhang, X.: Equivalence of theMelnikov function method and the averaging method. Qual. Theory Dyn. Syst. 15,...
    • 12. Ito, T.: A Filippov solution of a system of differential equations with discontinuous right-hand sides. Econom. Lett. 4, 349–354 (1979)
    • 13. Li, S., Liu, C.: A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system. J. Math....
    • 14. Li, C., Zhang, Z.: Remarks on 16th weak Hilbert problem for n = 2. Nonlinearity 15, 1975–1992 (2002)
    • 15. Liu, X., Han, M.: Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Int. J. Bifurcat. Chaos 20, 1379–1390 (2010)
    • 16. Llibre, J., Mereu, A.: Limit cycles for discontinuous quadratic differential systems. J. Math. Anal. Appl. 413, 763–775 (2014)
    • 17. Llibre, J., Tang, Y.: Limit cycles of discontinuous piecewise quatratic and cubic polynomial perturbations of a linear center. Discrete...
    • 18. Llibre, J., Zhang, X.: Limit cycles for discontinuous planar piecewise linear differential systems separated by an algebraic curve. Int....
    • 19. Novaes, D.D., Torregrosa, J.: On extended Chebyshev systems with positive accuracy. J. Math. Anal. Appl. 448, 171–186 (2017)
    • 20. Ramirez, O., Alves, A.M.: Bifurcation of limit cycles by perturbing piecewise non-Hamiltonian systems with nonlinear switching manifold....
    • 21. Sui, S., Yang, J., Zhao, L.: On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations...
    • 22. Teixeira, M.: Perturbation theory for non-smooth systems in: Encyclopedia of Complexity and Systems Science. Springer, New York (2009)
    • 23. Tian, H., Han, M.: Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with switching curve. Discrete and Continuous...
    • 24. Xiong, Y., Hu, J.: Limit cycle bifurcations in perturbations of planar piecewise smooth systems with multiply lines of critical points....
    • 25. Yang, J., Zhao, L.: Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations. J. Differ....
    • 26. Yang, J.: Limit cycles appearing from the perturbation of differential systems with multiple switching curves. Chaos Solitons Fractals...
    • 27. Zhao, Q., Yu, J.: Poincaré maps of " < "-shape planar piecewise linear dynamical systems with a saddle. Int. J. Bifurcat. Chaos...
    • 28. Zou, C., Liu, C., Yang, J.: On piecewise linear differential systems with n limit cycles of arbitrary multiplicities in two zones. Qual....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno