Ir al contenido

Documat


Non–Equivalence Between the Melnikov and the Averaging Methods for Nonsmooth Differential Systems

  • Zhifei Guo [1] ; Jaume Llibre [2]
    1. [1] Sichuan University

      Sichuan University

      China

    2. [2] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • It is known that for smooth differential systems in the plane R2 the Melnikov and the averaging methods for studying the limit cycles produce the same results. Here we prove that this is not the case for nonsmooth differential systems in the plane.

      More precisely, we prove that the linear system x˙ = y, y˙ = −x, can produce at most 5 crossing limit cycles using the averaging theory of first order and also produce at most 5 crossing limit cycles using the averaging theory of second order, when it is perturbed by discontinuous piecewise polynomials of two pieces separated by the cubic curve y = x3, and having in each piece a quadratic polynomial differential system.

      While using the Melnikov theory up to second order these discontinuous piecewise differential systems already produce 7 crossing limit cycles having in each piece a linear polynomial differential system. Note that the class of the linear polynomial differential systems is contained into the class of quadratic polynomial differential systems.

  • Referencias bibliográficas
    • 1. Andrade, Kds, Cespedes, O.A.R., Cruz, D.R., Novaes, D.D.: Higher order Melnikov analysis for planar piecewise linear vector fields with...
    • 2. Bastos, J.R., Buzzi, C.A., Llibre, J., Novaes, D.D.: Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold....
    • 3. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems, Theory and Applications. Springer-Verlag,...
    • 4. Browder, F.: Fixed point theory and nonlinear problems. Bull. Amer. Math. Soc. 9, 1–39 (1983)
    • 5. Buic˘a, A., Llibre, L.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128, 7–22 (2004)
    • 6. Buzzi, C.A., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete Contin. Dyn. Syst. 9, 3915–3936 (2013)
    • 7. Cardin, P.T., Torregrosa, J.: Limit cycles in planar piecewise linear differential systems with nonregular separation line. Physica D 337,...
    • 8. Chen, X., Llibre, J., Zhang, W.: Averaging approach to cyclicity of Hopf bifurcation in planar linearquadratic polynomial discontinuous...
    • 9. Chen, X., Llibre, J., Zhang, W.: Cyclicity of (1, 3)-switching FF type equilibria. Discrete Contin. Dyn. Syst. Ser. B 24, 6541–6552 (2019)
    • 10. Chen, X., Romanovski, V.G., Zhang,W.: Degenerate Hopf bifurcations in a family of FF-type switching systems. J. Math. Anal. Appl. 432,...
    • 11. Filippov, A.F.: Differential Equation with Discontinuous Right-Hand Sides. Kluwer Academic, Amsterdam (1988)
    • 12. Giné, J., Grau, M., Llibre, J.: Averaging theory at any order for computing periodic orbits. Phys. D 250, 58–65 (2013)
    • 13. Han, M.: On the maximum number of periodic solutions of piecewise smooth periodic equations by average method. J. Appl. Anal. Comput....
    • 14. Han,M., Romanovski, V.G., Zhang, X.: Equivalence of theMelnikov function method and the averaging method. Qual. Theory Dyn. Syst. 15,...
    • 15. Han, M., Sheng, L.: Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J. Appl. Anal. Comput. 5, 809–815 (2015)
    • 16. Han, M., Zhang, W.: On Hopf bifurcation in non-smooth planar systems. J. Differential Equations 248, 2399–2416 (2010)
    • 17. Itikawa, J., Llibre, J., Novaes, D.D.: A new result on averaging theory for a class of discontinuous planar differential systems with...
    • 18. Karlin, S.J., Studden, W.J.: Tchebycheff systems: With Applications in Analysis and Statistics, Pure Appl. Math. Interscience Publishers,...
    • 19. Li, T., Llibre, J.: Limit cycles in piecewise polynomial systems allowing a non-regular switching boundary. Physica D 419, 132855 (2021)
    • 20. Llibre, J., Mereu, A.C., Novaes, D.D.: Averaging theory for discontinuous piecewise differential systems. J. Differential Equations 258,...
    • 21. Llibre, J., Novaes, D.D., Teixeira, M.A.: Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity...
    • 22. Llibre, J., Novaes, D.D., Teixeira, M.A.: On the birth of limit cycles for non-smooth dynamical systems. Bull. Sci. Math. 139, 229–244...
    • 23. Llibre, J., Ponce, E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zones,. Dynam. Contin....
    • 24. Llibre, J., Tang, Y.: Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete...
    • 25. Llibre, J., Zhang, X.: Limit cycles for discontinuous planar piecewise linear differential systems separated by one straight line and...
    • 26. Lloyd, N.G.: Degree Theory, Cambridge Tracts in Mathematics, vol. 73. Cambridge University Press, Cambridge-New York-Melbourne (1978)
    • 27. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: a survey. Phys. D 241, 1826–1844 (2012)
    • 28. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Method in Nonlinear Dynamical Systems, Appl. Math. Sci., vol. 59. Springer, New York...
    • 29. Simpson, D.J.W.: Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science A, vol. 69. World Scientific,...
    • 30. Wei, L., Zhang, X.: Averaging theory of arbitrary order for piecewise smooth differential systems and its application. J. Dynam. Differential...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno