Ir al contenido

Documat


An Investigation on the Approximate Controllability of Non-instantaneous Impulsive Hilfer Sobolev-Type Fractional Stochastic System Driven by the Rosenblatt Process and Poisson Jumps

  • Vandana Yadav [1] ; Ramesh Kumar Vats [1] ; Ankit Kumar [2]
    1. [1] National Institute Of Technology

      National Institute Of Technology

      Japón

    2. [2] Graphic Era Hill University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we aim to establish a set of sufficient conditions for the existence of an integral form mild solution and approximate controllability for a class of Sobolevtype Hilfer fractional stochastic differential systems driven by the Rosenblatt process and Poisson jumps. In the proposed control problem, we deal with a system that is under non-instantaneous impulsive effect. The sufficient condition for the existence of a mild solution for the proposed nonlinear control system has been established by using Schauder’s fixed point theorem. The approximate controllability results for the proposed control problem have been established under the consideration that the corresponding linear system is approximate controllable. By utilising stochastic analysis, the theory of resolvent operator, fractional calculus, and the fixed point technique, sufficient conditions have been established. At the end, an example is given to illustrate the abstract results.

  • Referencias bibliográficas
    • 1. Adel, M., Ramadan, M.E., Ahmad, H., Botmart, T.: Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous...
    • 2. Ahmed, H.M., El-Borai, M.M., Ramadan, M.E.: Noninstantaneous impulsive and nonlocal Hilfer fractional stochastic integrodifferential equations...
    • 3. Chalishajar, D., Kasinathan, R., Kasinathan, R.: Optimal control for neutral stochastic integrodifferential equations with infinite delay...
    • 4. Chalishajar, D., Ravikumar, K., Ramkumar, K., Anguraj, A.: Null controllability of Hilfer fractional stochastic differential equations...
    • 5. Chalishajar, D., Kasinathan, R., Kasinathan, R., Kasinathan, D., & David, J.A.: Trajectory controllability of neutral stochastic integrodifferential...
    • 6. Curtain, R. F., & Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer Science & Business Media (2012)
    • 7. Da Prato, G., & Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge university press (2014)
    • 8. Dhayal, R., Malik, M., Abbas, S.: Approximate and trajectory controllability of fractional stochastic differential equation with non-instantaneous...
    • 9. Dhayal, R., Malik, M., Abbas, S.: Approximate controllability for a class of non-instantaneous impulsive stochastic fractional differential...
    • 10. Dineshkumar, C., Sooppy Nisar, K., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer...
    • 11. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: A note on approximate controllability for nonlocal fractional...
    • 12. Gou, H., Li, B.: Study on Sobolev type Hilfer fractional integro-differential equations with delay. J. Fixed Point Theory appl. 20(1),...
    • 13. Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257(1),...
    • 14. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific (2000)
    • 15. Jeet, K., Kumar, A., Vats, R.K.: Approximate controllability of neutral Hilfer fractional differential equations of Sobolev-type in a...
    • 16. Kasinathan, D., Kasinathan, R., Kasinathan, R., Chalishajar, D.: Optimal control problem for higherorder non-instantaneous impulsive fractional...
    • 17. Kavitha, K., Vijayakumar, V., Shukla, A., Nisar, K.S., Udhayakumar, R.: Results on approximate controllability of Sobolev-type fractional...
    • 18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J: Theory and Applications of Fractional Differential Equations. Elsevier (2006)
    • 19. Kumar, A., Jeet, K., Vats, R.K.: Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition...
    • 20. Kumar, A., Vats, R.K., Dhawan, K., Kumar, A.: Approximate controllability of delay nonautonomous integro-differential system with impulses....
    • 21. Kumar Sharma, O.P., Vats, R.K., Kumar, A.: New exploration on approximate controllability of fractional neutral-type delay stochastic...
    • 22. Sharma, O.P.K., Vats, R.K., Kumar, A.: A note on existence and exact controllability of fractional stochastic system with finite delay....
    • 23. Kunita, H.: Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. Real and Stochastic Analysis:...
    • 24. Lakhel, E.H., McKibben, M.A.: Controllability for time-dependent neutral stochastic functional differential equations with Rosenblatt...
    • 25. Mahmudov, N.I.: Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J....
    • 26. Nain, A., Vats, R., Kumar, A.: Coupled fractional differential equations involving Caputo–Hadamard derivative with nonlocal boundary conditions....
    • 27. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Science & Business Media (2012)
    • 28. Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their...
    • 29. Ramkumar, K., Ravikumar, K., Varshini, S.: Fractional neutral stochastic differential equations with Caputo fractional derivative: fractional...
    • 30. Rihan, F.A., Rajivganthi, C., Muthukumar, P.: Fractional stochastic differential equations with Hilfer fractional derivative: Poisson...
    • 31. Saravanakumar, S., Balasubramaniam, P.: Approximate controllability of nonlinear Hilfer fractional stochastic differential system with...
    • 32. Shen, G., Yong, R.: Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space. J. Kor....
    • 33. Sousa, J.V.D.C., Oliveira, D.S., de Oliveira, E.C.: A note on the mild solutions of Hilfer impulsive fractional differential equations....
    • 34. Subrahmanyam, P. V.: Elementary Fixed Point Theorems. Springer Singapore (2018)
    • 35. Tudor, C.A.: Analysis of the Rosenblatt process. ESAIM: Probab. Stat. 12(1), 230–257 (2008)
    • 36. Yadav, V., Vats, R.K., Kumar, A., Jeet, K.: Results on the existence and approximate controllability of neutral-type delay integro-differential...
    • 37. Yadav, V., Vats, R.K., Kumar, A.: New exploration on the existence and null controllability of fractional Hilfer stochastic systems driven...
    • 38. Yan, Z.: Approximate optimal control of fractional impulsive partial stochastic differential inclusions driven by rosenblatt process....
    • 39. Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract....
    • 40. Yang, M., Lv, T., Wang, Q.: The averaging principle for Hilfer fractional stochastic evolution equations with Lévy noise. Fract. Fract....
    • 41. Yang, M., Wang, Q.R.: Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods...
    • 42. Yang, M., Alsaedi, A., Ahmad, B., Zhou, Y.: Attractivity for Hilfer fractional stochastic evolution equations. Adv. Differ. Equ. 2020(1),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno