Ir al contenido

Documat


Existence, Uniqueness, and Stability Results of Fractional Volterra–Fredholm Integro-Differential Equations with State-Dependent Delay

  • Tharmalingam Gunasekar [2] ; Prabakaran Raghavendran [3] ; Kottakkaran Sooppy Nisar [1]
    1. [1] Prince Sattam Bin Abdulaziz University

      Prince Sattam Bin Abdulaziz University

      Arabia Saudí

    2. [2] Indian Institute of Technology (IIT), Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology
    3. [3] Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025, 15 págs.
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper investigates the existence, uniqueness, and stability of solutions for fractional Volterra–Fredholm integro-differential equations with state-dependent delay, incorporating Caputo fractional derivative and semigroup of operators. Using Krasnoselskii’s fixed point theorem, the existence of solutions is established under specified conditions, while the Banach Contraction Principle ensures the uniqueness of the solutions. Ulam’s stability concept is applied to demonstrate the robustness of the solutions to perturbations. An example is included to illustrate the application of the theoretical results, and numerical analysis is performed to validate the theoretical findings and examine the convergence of the solutions. Additionally, graphical analysis is also performed to visualize the solutions and their behavior.

  • Referencias bibliográficas
    • 1. Aderyani, S.R., Saadati, R., Rassias, T.M., Srivastava, H.M.: Existence, uniqueness and the multistability results for a w-Hilfer fractional...
    • 2. Agarwal, R.P., Andrade, B.D.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62, 1143–1149...
    • 3. Almalahi, M.A., Panchal, S.K., Jarad, F., Abdo, M.S., Shah, K., Abdeljawad, T.: Qualitative analysis of a fuzzy Volterra–Fredholm integrodifferential...
    • 4. Almatroud, O.A., Hioual, A., Ouannas, A., Sawalha, M.M., Alshammari, S., Alshammari, M.: On variable-order fractional discrete neural networks:...
    • 5. Alzabut, J., Selvam, A.G.M., Dhineshbabu, R., Kaabar, M.K.: The existence, uniqueness, and stability analysis of the discrete fractional...
    • 6. Balasubramaniam, P., Tamilalagan, P.: Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions...
    • 7. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012)
    • 8. Bazhlekova, E.: Existence and uniqueness results for a fractional evolution equation in Hilbert space. Fract. Calc. Appl. Anal. 15, 232–243...
    • 9. Benchohra, M., Berhoun, F.: Impulsive fractional differential equations with state-dependent delay. Commun. Appl. Anal. 14(2), 213–224...
    • 10. Bonanno, G., Rodriguez-Lopez, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential...
    • 11. Columbu, A., Frassu, S., Viglialoro, G.: Refined criteria toward boundedness in an attraction–repulsion chemotaxis system with nonlinear...
    • 12. Dahmani, Z.: New existence and uniqueness results for high dimensional fractional differential systems. Facta Univers. Ser.: Math. Inf....
    • 13. Fu, X., Huang, R.: Existence of solutions for neutral integro-differential equations with state-dependent delay. Appl. Math. Comput. 224,...
    • 14. Gou, H.: On the S-asymptotically ω-periodic mild solutions for multi-term time fractional measure differential equations (2023)
    • 15. Gou, H.: Monotone iterative technique for Hilfer fractional evolution equations with nonlocal conditions. Bull. Sci. Math. 167, 102946...
    • 16. Gou, H., Li, Y.: Study on Hilfer–Katugampola fractional implicit differential equations with nonlocal conditions. Bull. Sci. Math. 167,...
    • 17. Gou, H., Li, Y.: Extremal mild solutions to Hilfer evolution equations with non-instantaneous impulses and nonlocal conditions. Fract....
    • 18. Gou, H., Shi, M.: Monotone iterative technique for multi-term time fractional measure differential equations. Fract. Calc. Appl. Anal....
    • 19. Guendouzi, T., Bousmaha, L.: Approximate controllability of fractional neutral stochastic functional integro-differential inclusions with...
    • 20. Gunasekar, T., Raghavendran, P.: The Mohand transform approach to fractional integro-differential equations. J. Comput. Anal. Appl. 33,...
    • 21. Gunasekar, Th., Raghavendran, P., Santra, Sh.S., Sajid, M.: Existence and controllability results for neutral fractional Volterra–Fredholm...
    • 22. Gunasekar, T., Raghavendran, P., Santra, S.S., Majumder, D., Baleanu, D., Balasundaram, H.: Application of Laplace transform to solve...
    • 23. Gunasekar, Th., Raghavendran, P., Santra, Sh.S., Sajid, M.: Analyzing existence, uniqueness, and stability of neutral fractional Volterra–Fredholm...
    • 24. HamaRashid, H., Srivastava, H.M., Hama, M., Mohammed, P.O., Al-Sarairah, E., Almusawa, M.Y.: New numerical results on existence of Volterra–Fredholm...
    • 25. HamaRashid, H., Srivastava, H.M., Hama, M., Mohammed, P.O., Almusawa, M.Y., Baleanu, D.: Novel algorithms to approximate the solution...
    • 26. Hamoud, A.: Existence and uniqueness of solutions for fractional neutral Volterra–Fredholm integro differential equations. Adv. Theory...
    • 27. Hamoud, A., Ghadle, K.: Some new uniqueness results of solutions for fractional Volterra–Fredholm integro-differential equations. Iran....
    • 28. Hamoud, A., Mohammed, N., Ghadle, K.: Existence and uniqueness results for Volterra–Fredholm integro differential equations. Adv. Theory...
    • 29. Hernandez, E., Prokopczyk, A., Ladeira, L.: A note on partial functional differential equations with state-dependent delay. Nonlinear...
    • 30. Hernandez, E., Fernandes, D., Zada, A.: Local and global existence and uniqueness of solution for abstract differential equations with...
    • 31. Iswarya,M., Raja, R., Rajchakit, G., Cao, J., Alzabut, J., Huang, C.: Existence, uniqueness and exponential stability of periodic solution...
    • 32. Jeelani, M.B., Alnahdi, A.S., Almalahi, M.A., Abdo, M.S., Wahash, H.A., Alharthi, N.H.: Qualitative analyses of fractional integrodifferential...
    • 33. Jeelani, M.B., Alnahdi, A.S., Abdo, M.S., Almalahi, M.A., Alharthi, N.H., Shah, K.: A generalized fractional order model for COV-2 with...
    • 34. Kalamani, P., Baleanu, D., Selvarasu, S., Mallika Arjunan, M.: On existence results for impulsive fractional neutral stochastic integro-differential...
    • 35. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
    • 36. Koyunbakan, H., Shah, K., Abdeljawad, T.: Well-posedness of inverse Sturm Liouville problem with fractional derivative. Qual. Theory Dyn....
    • 37. Liu, Z., Bin, M.: Approximate controllability for impulsive Riemann–Liouville fractional differential inclusions. Abstr. Appl. Anal. 2013,...
    • 38. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhauser, Basel (1995)
    • 39. Madani, Y.A., Rabih, M.N.A., Alqarni, F.A., Ali, Z., Aldwoah, K.A., Hleili, M.: Existence, uniqueness, and stability of a nonlinear tripled...
    • 40. Mainardi, F., Paradisi, P., Gorenflo, R.: Probability distributions generated by fractional diffusion equations. In: Kertesz, J., Kondor,...
    • 41. Ndiaye, A., Mansal, F.: Existence and uniqueness results of Volterra–Fredholm integro-differential equations via caputo fractional derivative....
    • 42. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. SpringerVerlag, New York (1983)
    • 43. Pervaiz, B., Zada, A.: Existence results for the solution of abstract neutral impulsive differential problems with state-dependent delay....
    • 44. Pervaiz, B., Zada, A., Popa, I.-L., Kallekh, A.: Existence, uniqueness, and Hyers–Ulam stability of abstract neutral differential equation...
    • 45. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
    • 46. Raghavendran, P., Gunasekar, T., Balasundaram, H., Santra, S.S., Majumder, D., Baleanu, D.: Solving fractional integro-differential equations...
    • 47. Sarwar, S.: On the existence and stability of variable order Caputo type fractional differential equations. Fract. Fract. 6(2), 51 (2022)
    • 48. Shah, K., Sher, M., Ali, A., Abdeljawad, T.: On degree theory for non-monotone type fractional order delay differential equations. AIMS...
    • 49. Shah, K., Ali, G., Ansari, K.J., Abdeljawad, T., Meganathan, M., Abdalla, B.: On qualitative analysis of boundary value problem of variable...
    • 50. Shah, K., Sher, M., Sarwar, M., Abdeljawad, T.: Analysis of a nonlinear problem involving discrete and proportional delay with application...
    • 51. Sher, M., Khan, A., Shah, K., Abdeljawad, T.: Existence and stability theory of pantograph conformable fractional differential problem....
    • 52. Sher, M., Shah, K., Sarwar, M., Alqudah, M.A., Abdeljawad, T.: Mathematical analysis of fractional order alcoholism model. Alex. Eng....
    • 53. Thakur, D., Raghavendran, P., Gunasekar, T., Thakur, P. C., Krishan, B., Kumar, S.: Solving the chemical reaction models with the Upadhyaya...
    • 54. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
    • 55. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3), 1063–1077 (2010)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno