Ir al contenido

Documat


Well-Posedness of Inverse Sturm–Liouville Problem with Fractional Derivative

  • Hikmet Koyunbakan [1] ; Kamal Shah [2] ; Thabet Abdeljawad [3]
    1. [1] Fırat University

      Fırat University

      Turquía

    2. [2] Prince Sultan University & University of Malakand
    3. [3] Prince Sultan University & China Medical University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We have given the inverse nodal problem for the fractional Sturm–Liouville (S–L) problem and the stability for this problem. First of all, we have shown asymptotic forms for nodal parameters and by them, the potential function can be reconstructed with a limit of nodal parameters. We proved that this limit exists. We also gave wellposedness of the problem in the rest of study. We have basically shown that the set of potential functions satisfying the condition π 0 q(t)dαt < ∞ is homeomorphic to the space of quasi nodal sequences. Although the results given in the paper were given for the classical derivative of S–L the problem, the results here are different and more general than the previous results because they contain the fractional derivative.

      If α = 1, the results coincide with the results given for classical derivative problem

  • Referencias bibliográficas
    • 1. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
    • 2. Al-Refai1 M. and Abdeljawad T.(2017) Fundamental results of conformable Sturm–Liouville eigenvalue problems, Complexity, , Article ID 3720471,...
    • 3. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, New York (1999)
    • 4. Kvitsinskii, A.A.: Fractional integrals and derivatives: theory and applications. Teor. Mater. Fiz 3, 397–414 (1993)
    • 5. Chen, X.F., Cheng, Y.H., Law, C.K.: Reconstructing potentials from zeros of one eigenfunction Trans. Amer. Math. Soc. 363, 4831–4851 (2011)
    • 6. Chen, Y.T., Cheng, Y.H., Law, C.K., Tsay, J.: L1 convergence of the reconstruction formula for the potential function. Proc. Am. Math....
    • 7. Gesztesy, F., Simon, B.: Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum. Trans....
    • 8. Keskin, B.: Inverse problems for one dimensional fractional dirac type integro differential system. Inverse Probl. 36, 065001 (2020). https://doi.org/10.1088/1361-6420/ab7e03
    • 9. Neamaty, A., Khalili, Y.: Determination of a differential operator with discontinuity from interior spectral data Inv. Prob. Sci. Eng....
    • 10. Pivovarchik, V.: Direct and inverse three-point Sturm–Liouville problems with parameter-dependent boundary conditions. Asymptot. Anal....
    • 11. Buterin, S.A., Shieh, C.T.: Incomplete inverse spectral and nodal problems for differential pencils. Res. Math. 62, 167–179 (2012)
    • 12. Çakmak, Y.: Inverse nodal problem for a conformable fractional diffusion operator. Inverse Probl. Sci. Eng. 29(9), 1308–1322 (2021)
    • 13. Cheng, Y.H., Law, C.K., Tsay, J.: Remarks on a new inverse nodal problem. J. Math. Anal. Appl. 248, 145–155 (2000)
    • 14. Goktas, S., Koyunbakan, H., Gulsen, T.: Inverse nodal problem for polynomial pencil of Sturm– Liouville operator. Math. Methods Appl....
    • 15. Gulsen, T., Yilmaz, E., Akbarpoor, A.: Numerical investigation of the inverse nodal problem by Chebyshev interpolation method. Therm....
    • 16. Guo, Y., Wei, G.: Inverse problems: dense nodal subset on an interior subinterval. J. Differ. Equ. 255, 2002–2017 (2013)
    • 17. Hald, O., McLaughlin, J.R.: Solution of the inverse nodal problems. Inverse Probl. 5, 307–347 (1989)
    • 18. Law, C.K., Tsay, J.: On the well-posedness of the inverse nodal problem. Inverse Probl. 17(5), 1493– 1512 (2001)
    • 19. Pinasco, J.P., Scarola, C.: A nodal inverse problem for second order Sturm–Liouville operators with indefinite weights. Appl. Math. Comput....
    • 20. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153...
    • 21. Wang, Y.P., Yurko, V.: On the inverse nodal problems for discontinuous Sturm–Liouville operators. J. Differ. Equ. 260, 4086–4109 (2016)
    • 22. Yang, C.F.: Inverse nodal problems of discontinuous Sturm–Liouville operator. J. Differ. Equ. 254, 1992–2014 (2013)
    • 23. Yang, C.F.: An inverse problem for a differential pencil using nodal points as data. Isr. J. Math. 204, 431–446 (2014)
    • 24. Koyunbakan, H.: Inverse nodal problem for p Laplacian energy dependent Sturm Liouville equation. Bound. Value Probl. 2013, 272 (2013)
    • 25. Yang, X.F.: A new inverse nodal problem. J. Differ. Equ. 169, 633–653 (2001)
    • 26. McLaughlin, J.R.: Inverse spectral theory using nodal points as data, a uniqueness result. J. Diff. Equ. 73, 354–362 (1988)
    • 27. Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13, 889–898 (2015)
    • 28. Avci, D., Iskender Eroglu, B., Ozdemir, N.: The Dirichlet problem of a conformable advection diffusion equation. Therm. Sci. 21, 9–18...
    • 29. Baleanu, D., Guvenc, Z.B., Machado, J.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York (2010)
    • 30. Benkhettou, N., Hassani, S., Torres, D.F.M.: A Fractional calculus on arbitrary time scales. J. King. Saud. Univ. Sci. 28, 93–98 (2016)
    • 31. Khalil, R., Al Horani, M., Yousef, A., et al.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)
    • 32. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amester Dam (2006)
    • 33. Klimek, M., Agrawal, O.P.: Fractional Sturm–Liouville problem. Comput. Math. Appl. 66, 795–812 (2013)
    • 34. Miller, K.S.: An Introduction to Fractional Calculus and Fractional Differential Equations J. Wiley, New York (1993)
    • 35. Law, C.K., Lian, W.C., Wang, W.C.: The inverse nodal problem and Ambarzumyan problem for the p-Laplacian. Proc. R. Soc. Edingb. 139, 1261–1273...
    • 36. Mortazaas, H., Jodayree, A.A.: Trace formula and inverse nodal problem for a fractional Sturm– Liouville problem. Inverse Probl. Sci....
    • 37. Ortigueira, M.D., Tenreiro Machado, J.A.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)
    • 38. Rashid, S., Hammouch, Z., Ashraf, R., Baleanu, D., Nisar, K.S.: New quantum estimates in the setting of fractional calculus theory. Adv....
    • 39. Rivero, M., Trujillo, J.J., Velasco, M.P.: A fractional approach to the Sturm–Liouville problem. Centr. Eur. J. Phys. 11, 1246–1254 (2013)
    • 40. Wang, Y., Zhou, J., Li, Y.: Fractional Sobolev spaces on time scales via conformable fractional calculus and their application to a fractional...
    • 41. Adalar, I., Ozkan, A.S.: Inverse problems for a conformable fractional Sturm–Liouville operator. J. Inverse Ill-Posed Probl. 28(6), 775–782...
    • 42. Klimek, M., Agrawal, O.P.: Fractional Sturm–Liouville problem. Comput. Math. Appl. 66(5), 795–812 (2013)
    • 43. Ercan, A., Panakhov, E.S.: Spectral analysis for discontinuous conformable Sturm–Liouville problems with spectral parameter contained...
    • 44. Bas, E., Metin Turk, F., Ozarslan, R., et al.: Spectral data of conformable Sturm–Liouville direct problems. Anal. Math. Phys. 11, 8 (2021)....
    • 45. Wang, W.C.: Some notes on conformable fractional Sturm–Liouville problems. Bound Value Probl. 2021, 103 (2021). https://doi.org/10.1186/s13661-021-01581-y

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno