Ir al contenido

Documat


Sistemas de ecuaciones lineales sobre anillos conmutativos

  • Autores: Araceli de Francisco Iribarren
  • Directores de la Tesis: José Ángel Hermida Alonso (dir. tes.) Árbol académico
  • Lectura: En la Universidad de Valladolid ( España ) en 1997
  • Idioma: español
  • Tribunal Calificador de la Tesis: Tomás Sánchez Giralda (presid.) Árbol académico, Jesús Manuel Domínguez Gómez (secret.) Árbol académico, Emilio Villanueva Novoa (voc.) Árbol académico, A. Verschoren (voc.) Árbol académico, Pascual Jara Martínez (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • LA PRESENTE MEMORIA ESTA DEDICADA AL ESTUDIO DE LOS SISTEMAS DE ECUACIONES LINEALES EN ANILLOS CONMUTATIVOS, TRAS PROBAR QUE UN SISTEMA (S):A.X=B TIENE SOLUCION EN EL ANILLO ENTONCES SE VERIFICAN LA IGUALDAD DE IDEALES DETERMINANTALES Y LA IGUALDAD DE RANGOS ENTRE LA MATRIZ DEL SISTEMA Y LA MATRIZ AMPLIADA, SE CARACTERIZAN DIVERSAS CLASES DE ANILLOS EN TORNO A LA RECIPROCA DE ESTAS CONDICIONES. ESPECIALMENTE IMPORTANTE ES LA CLASIFICACION DE LOS ANILLOS INTEGRAMENTE CERRADOS Y LOS DOMINIOS DE PRUFER. SE ESTUDIAN TAMBIEN LOS SISTEMAS DE ECUACIONES, PARA MATRICES CUADRADAS CUYO DETERMINANTE SEA UN NO DIVISOR DE CERO, OBTENIENDO CRITERIOS EQUIVALENTES AL CASO CLASICO.

      SE ABORDA EN QUINTO CAPITULO EL PROBLEMA ABIERTO DE CARACTERIZAR CUANDO EL ANILLO DE POLINOMIOS EN UNA INDETERMINADA ES INTEGRAMENTE CERRADO.

      RESOLVIENDOSE EL PROBLEMA EN ALGUNOS CASOS PARTICULARES.

      LA PARTE FINAL DE LA MEMORIA ESTA DEDICADA AL ESTUDIO DE LOS SISTEMAS DE ECUACIONES EN EL CONTEXTO DE LA TEORIA DE RESOLUCIONES LIBRES FINITAS.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno