Se estudia, principalmente, una técnica de análisis de agrupamiento o clustering conocida como algoritmo K-Medianas, la cual puede verse como un adaptación del conocidísimo algoritmo K-Medias a espacios métricos, Esta extensión tiene gran interés ya que muchas aplicaciones del clustering involucran objetos cuya riqueza estructural no puede representarse adecuadamente en un espacio vectorial, si bien se dispone de una función distancia o métrica para medir la disimilitud entre cualquier para de puntos (objetos).
Una de las principales aportaciones del trabajo es la optimización del coste compuacional del algoritmo K-Medianas, especialmente en términos de número de cómputos de distancias. Asimismo, el trabajo aporta un estudio detallado sobre la aplicabilidad de este algoritmo tanto en el análisis exploratorio de datos como en la selección no supervisada de prototipos para el diseño de clasificadores basados endistancias.
Las prestaciones del algoritmo optimizado se contrastan en un problema concreto del reconocimiento de formas; el reconocimiento de cromosomas humanos (representados mediante cadenas OE primitivas y comprados mediante distancias de edición).
© 2008-2024 Fundación Dialnet · Todos los derechos reservados