Ir al contenido

Documat


Optimización de prestaciones en técnicas de aprendizaje no supervisado y su aplicación al reconocimiento de formas

  • Autores: Alfons Juan Císcar Árbol académico
  • Directores de la Tesis: Enrique Vidal Ruiz (dir. tes.) Árbol académico
  • Lectura: En la Universitat Politècnica de València ( España ) en 2000
  • Idioma: español
  • Tribunal Calificador de la Tesis: Francisco Casacuberta Nolla (presid.) Árbol académico, Nicolás Pérez de la Blanca Capilla (secret.) Árbol académico, Francesc Josep Ferri Rabasa (voc.) Árbol académico, Luisa Micó Andrés (voc.) Árbol académico, Juan-Carlos Pérez-Cortés (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Se estudia, principalmente, una técnica de análisis de agrupamiento o clustering conocida como algoritmo K-Medianas, la cual puede verse como un adaptación del conocidísimo algoritmo K-Medias a espacios métricos, Esta extensión tiene gran interés ya que muchas aplicaciones del clustering involucran objetos cuya riqueza estructural no puede representarse adecuadamente en un espacio vectorial, si bien se dispone de una función distancia o métrica para medir la disimilitud entre cualquier para de puntos (objetos).

      Una de las principales aportaciones del trabajo es la optimización del coste compuacional del algoritmo K-Medianas, especialmente en términos de número de cómputos de distancias. Asimismo, el trabajo aporta un estudio detallado sobre la aplicabilidad de este algoritmo tanto en el análisis exploratorio de datos como en la selección no supervisada de prototipos para el diseño de clasificadores basados endistancias.

      Las prestaciones del algoritmo optimizado se contrastan en un problema concreto del reconocimiento de formas; el reconocimiento de cromosomas humanos (representados mediante cadenas OE primitivas y comprados mediante distancias de edición).


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno