Johan Armando Ceballos Cañón
Esta tesis se enmarca dentro del campo de la Alta Precisión Relativa (HRA) en Álgebra Lineal Numérica (ALN). Sus líneas maestras son dos. Por un lado, el diseño y análisis de algoritmos que permitan resolver problemas de Álgebra Lineal con más precisión de la habitual para matrices con estructura. Y por otro el estudio de la teoría específica de perturbaciones necesaria para tratar los problemas que nos ocupan. En nuestra investigación hemos tratado dos: La obtención de soluciones precisas del problema de mínimos cuadrados para matrices con estructura (Capítulo 3). La obtención de autovalores y autovectores precisos para matrices simétricas graduadas (Capítulo 4)....
© 2008-2024 Fundación Dialnet · Todos los derechos reservados