Ir al contenido

Documat


Resumen de TECGAFLIP: Investigación en didáctica de la geometría con nuevas tecnologías, gamificación y flipped learning en educación secundaria

Silvia Moral Sánchez

  • español

    En el siglo XXI, surge la necesidad de un cambio en el paradigma educativo, siendo las nuevas metodologías junto a las Tecnologías de la Información y la Comunicación (TIC) un medio vehicular para este propósito. Esta tesis doctoral aborda, bajo la metodología de investigación-acción, el diseño, implementación y análisis de una experiencia didáctica en geometría. Se propone una intervención con el mismo grupo-clase, en dos cursos consecutivos, sobre proporcionalidad geométrica en un primer ciclo y sólidos geométricos en el segundo, dentro de la asignatura de Matemáticas, en el I.E.S. Juan de la Cierva de Vélez-Málaga (Málaga).

    Al inicio de la experiencia, en el segundo curso de Educación Secundaria Obligatoria (ESO), se parte de un modelo tradicional, que da paso a un primer ciclo en el que se utilizan técnicas de gamificación apoyadas en la plataforma educativa digital Edmodo y recursos del modelo flipped learning, en combinación con la utilización de TIC con iniciación al enfoque STEM (Science, Technology, Engineering and Mathematics).

    El primer ciclo pretende ser una aproximación inicial, la cual se completará en el segundo ciclo, a lo que se va a denominar en este documento propuesta de modelo pedagógico TECGAFLIP, acrónimo de nuevas TECnologías, GAmificación y FLIPped learning. TECGAFLIP se define como una propuesta de modelo pedagógico orgánico mixto con base principal en técnicas de gamificación apoyadas en flipped learning, el cual admite la fusión e integración con otras metodologías activas y/o modelos de aprendizaje como Aprendizaje Basado en Juegos (ABJ) o mobile learning (m-learning). Además, con su aplicación, se pretende alcanzar la mejora en la alfabetización competencial digital del alumnado en el uso de herramientas tecnológicas educativas aplicadas al desarrollo matemático, modelización e iniciación al enfoque STEM.

    Se muestran las actividades y los resultados del primer ciclo, a través del método observacional y vivencial. Esto puede ayudar a que el alumnado sea el protagonista del proceso, construyendo un aprendizaje autónomo y más duradero, además de fomentar la motivación, la adquisición de competencias y el trabajo en equipo.

    En un segundo ciclo de investigación-acción, que tiene lugar en el mismo centro educativo y con el mismo grupo-clase, en 3º ESO (estudiantes entre 14 y 16 años), se desarrolla un conjunto de actividades sobre sólidos geométricos, haciendo hincapié en los poliedros. Se mejora la propuesta de modelo TECGAFLIP con una plataforma educativa digital más completa, Classcraft. Esta plataforma aúna todos los elementos propios de la gamificación permitiendo asignar roles al alumnado e integrando el modelo flipped learning. Del mismo modo, en las sesiones de clase, se trabaja con nuevas tecnologías educativas que empiezan a formar parte del metaverso, como la realidad aumentada (RA) y la realidad virtual inmersiva (RV) entre otras, bajo una iniciación al enfoque STEM.

    El núcleo matemático central de la propuesta en este segundo ciclo es el fomento, adquisición y mejora de habilidades espaciales. Se parte de los errores geométricos detectados en una evaluación inicial y se diseñan actividades sustentadas en las ventajas que ofrecen los entornos inmersivos de realidad virtual para el desarrollo de dichas habilidades, además de actividades realizadas con materiales manipulativos.

    Para comparar los resultados de cada ciclo, se consideran evidencias analizadas desde la dimensión cognitiva, la dimensión social y la dimensión motivacional entre otras (Santiago & Bergmann, 2018; Pérez & Gertúdix, 2021). Dichas evidencias ponen de manifiesto que las mejoras se van produciendo secuencialmente desde el primer ciclo, siendo en el segundo ciclo donde se alcanzan los mejores resultados en cuanto a rendimiento académico, participación y motivación del alumnado, interacción social y atención a la diversidad. Se analizan, además, las resoluciones de los estudiantes respecto a la adquisición de habilidades espaciales, mostrando y comparando las estrategias utilizadas con RV y materiales manipulativos. El análisis de los resultados muestra evidencias de desarrollo de habilidades espaciales y mejora en cuanto a la subsanación de errores cometidos.

    Por tanto, la meta principal de esta tesis doctoral es compartir con la comunidad educativa y analizar una experiencia didáctica matemática diseñada, desarrollada y evaluada en dos ciclos bajo el marco de la metodología de investigación-acción. Se concreta en dos objetivos principales, de los cuales se extraen los objetivos específicos y complementarios, que se verán con detalle en el primer capítulo de este documento. Esta tesis doctoral se enmarca en el proyecto de investigación UAL2020-SEJ-B2086 de I+D+i en el marco del Programa financiado por los Fondos Europeos de Desarrollo Regional FEDER.

  • English

    In the 21st century, a change in the educational paradigm is needed. New methodologies together with Information and Communication Technologies (ICT) are a vehicle for this purpose. Under the action-research paradigm, this doctoral thesis addresses the design, implementation and analysis of a didactic experience in the subject of Mathematics at the I.E.S. Juan de la Cierva in Vélez-Málaga (Málaga-Spain). An intervention is proposed with the same group-class, in two consecutive courses, on geometric proportionality in the first cycle, and geometric solids in the second one.

    At the beginning of the experience, in the second year of Compulsory Secondary Education3, a traditional model leads to a first research cycle, in which gamification techniques are used, supported by the Edmodo digital educational platform and resources from the flipped learning model. It is combined with the use of ICT and an introduction to the STEM (Science, Technology, Engineering and Mathematics) approach.

    The first cycle is intended as an initial approach, which will be completed in the second cycle with what will be referred to in this document as the TECGAFLIP pedagogical model, an acronym for new TEChnologies, GAmification and FLIPped learning. TECGAFLIP is defined as a proposal for a mixed organic pedagogical model, based mainly on gamification techniques supported by flipped learning, which admits the fusion and integration with other active methodologies and/or learning models, such as Game Based Learning (GBL) or mobile learning (m-learning). With its implementation, the aim is to achieve an improvement in the digital literacy of students, with the use of educational technology tools applied to mathematical development, modelling, and an initiation to the STEM approach.

    Through an experiential methodology and its observation, activities and results of the first cycle are shown. This methodology can help students to be the protagonists of their own learning process, building autonomous and more lasting learning, as well as fostering motivation, and the acquisition of competences and teamwork skills.

    In a second action-research cycle, which takes place in the same educational centre and with the same group-class, in 3rd ESO (students between 14 and 16 years old), a set of activities on geometric solids is developed, with emphasis on polyhedra. The TECGAFLIP proposal is improved with a more complete digital educational platform: Classcraft. This platform combines all the elements of gamification, allowing students to be assigned roles and integrating the flipped learning model. Similarly, in the classroom sessions, new educational technologies are introduced which are becoming part of the metaverse, such as augmented reality (AR) and immersive virtual reality (VR), among others, under an initiation to the STEM approach.

    The mathematical core of the proposal focuses on fostering the acquisition and improvement of spatial skills in students. Based on the geometric errors detected by means of an initial assessment, activities are designed taking advantage of the affordances offered by immersive virtual reality environments for the development of these skills, in addition to activities carried out with manipulative materials.

    In order to compare the results of each cycle, data are analysed from the cognitive, social and motivational perspectives, among others (Santiago & Bergmann, 2018; Pérez & Gertúdix, 2021). The evidence shows that improvements occur sequentially from the first cycle, with the best results being achieved in the second cycle, in terms of academic performance, student participation, motivation, social interaction and attention to diversity. In addition, the students' activity regarding the acquisition of spatial skills is analysed, showing and comparing the strategies employed with VR versus manipulative materials. The results show evidence of the development of spatial skills, together with an improvement in errors handling.

    Therefore, the main goal of this doctoral thesis is to share with the educational community a didactic experience designed, developed and evaluated in two cycles, under action-research paradigm. It is focused on two main objectives, from which the specific and complementary objectives are extracted, as will be specified in the first chapter of this document.

    This doctoral thesis consists of 7 chapters, plus bibliographical references and annexes. The summary and the chapter on conclusions have been translated into English, to comply with the thesis’ international mention requirement. The content of each of the chapters is described below.

    In chapter 1, the research problem is presented in the introductory section. Next, the research objectives are set out, and the methodological framework of action-research and its phases are justified. Then, the instruments and techniques used for collecting information are presented. In addition, a list of scientific publications related to this thesis, as well as some activities carried out by the doctoral student, are provided.

    Chapter 2 sets out the theoretical framework and the background that support this research, and it is structured in four blocks. In the first one, the theoretical assumptions are described in relation to the active methodologies employed and the plasticity they can show when integrated with each other, forming the TECGAFLIP proposal. In the second block, the relationship between gamified designs, TECGAFLIP, and motivation is established. Thirdly, a justification of the use of ICT, like educational platforms, augmented reality, immersive virtual reality (Neotrie VR) and social networks (Twitter), as a support for the teaching and learning of geometry, is undertaken. In the last block, spatial skills, together with errors and difficulties in the learning of polyhedra, are discussed. In addition, all the blocks include references to various studies that are part of the background of this research.

    Chapters 3 and 4 describe the design and implementation of the two cycles of the didactic intervention. In the first cycle, which focuses on the methodological part, reference is made to the curricular justification of the geometrical content covered, also alluding to the key competences and mathematical competences brought into play in the sessions developed. The development of these sessions is made explicit, together with the tools employed. The reflection on the results obtained is also embedded in chapter 3. This reflection influences the design of the second cycle. The second cycle of the study focuses not only on more practical and useful aspects that highlight the functionality of the TECGAFLIP proposal, but also on the instruments used to investigate the mathematical aspects, highlighting the use of Neotrie VR as immersive virtual reality software for the development of spatial skills in students. Similarly, the use of the initial assessment as a starting point for the detection of geometric errors, which influence the subsequent design, is highlighted. So is the final assessment, which considers students´ preferences and is coherent with the TECGAFLIP proposal with a STEM approach carried out during the second cycle.

    Chapters 5 and 6 present the results and analysis of the second cycle. Due to their wide scope, they are presented in two chapters, separate from the design and implementation phases. Each of these two chapters addresses one the two main objectives of this research: one is focused on the methodological part with the TECGAFLIP proposal, and the other on the development of spatial skills as part of the students´ geometry learning. In chapter 5, under a series of qualitative categorisations, the results of the second action-research cycle are presented, and they are then compared with those obtained in the first cycle. Chapter 6 show the results on the spatial skills developed by students during the second cycle, together with the errors and difficulties that arose.

    Chapter 7 sets out the discussion and conclusions of the study. This chapter provides answers to the research objectives and relates these answers to the studies presented in the theoretical framework. The contributions of this action-research experience and its implications for the teaching of mathematics are highlighted. Finally, the limitations of this work are considered and possible lines for future research are suggested.


Fundación Dialnet

Mi Documat