El objetivo que se aborda en la tesis es el estudio del problema isoperimétrico en variedades de Rieman, En este contexto general se presentan algunos resultados que pueden resumirse en:
1) Obtención de desigualdades isoperimétricas para sectores de superficies y, en general, para conos de ángulos sólidos pequeños, y caracterizaciones de las igualdades.
2) Búsqueda de una cota superior fina del primer valor propio de la Laplaciana de una hipersuperficie cerrada M embebida en la variedad ambiente, utilizando un invariante extrínseco: el volumen encerrado por M.
3) Acotación de la curvatura media de una hipersuperficie compacta M embebida en un espacio formal real o complejo. Tales cotas dependen del cociente isoperimétrico volumen (M)/volumen ( \Omega), donde \Omega es el dominio encerrado por M, del radio de la mínima bola geodésica que contiene a \Omega y/o del radio de la máxima bola geodésica contenida en \Omega. Estas cotas son alcanzables.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados