Ir al contenido

Documat


Resumen de Dos herramientas en geometría algebraica: construcción de configuraciones en geometría tropical e hipercírculos para la simplificación de curvas paramétricas

Luis Felipe Tabera Alonso Árbol académico

  • Estudiamos dos problemas en geometría algebraica: el primero es la comparación de la geometría algebraica y trópica, En particular, comparamos las configuraciones de incidencia, la regla de Cramer y la nación de resultante.

    Presentamos la noción de construcción geométrica y traducimos, bajo ciertas condiciones, diversos teoremas clásicos de incidencia en el contexto tropical, como el teorema de Pappus, de Fano, recíproco de Pascal, Chasles o Cayley-Bacharach.

    La segunda parte de la tesis trata de las curvas hipercírculos. Esas curvas fueron introducidas por Andradas, Recio y Sendra y se utilizan en el problema de las reparametrizaciones de curvas algebraicas con coeficientes algebraicamente óptimos a partir de una parametrización no óptima dada. Estudiamos la variedad de Weil en el caso paramétrico, la geometría de los hipercírculos y damos un método de reparametrización óptimo para el caso de reparametrizaciones afines.


Fundación Dialnet

Mi Documat