Juan Miguel Ortiz de Lazcano Lobato
El Análisis de Componentes Principales local es una técnica de gran utilidad para tratar un conjunto de datos de gran dimensión, con el objetivo de reducir su tamaño a unas pocas componentes significativas y evitar, de esa manera, la maldición de la dimensionalidad, El presente trabajo desarrolla varios sistemas neuronales on supervisados (dos competitivos y no autoorganizado) donde cada neurona es capaz de realizar un Análisis de componentes Principales sobre las muestras pertenecientes a su campo receptivo. De esta forma se consigue una mayor capacidad de representación de estos nuevos modelos con respecto a los modelos competitivo y autoorganizado clásicos. Se comprueba empíricamente como dichos novedosos modelos presentan un buen rendimiento cuando se aplican al problema de reducción de la dimensión de un conjunto de datos.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados