EN ESTA MEMORIA SE ESTUDIAN ANILLOS CONMUTATIVOS UTILIZANDO TECNICAS LOCALES, PARA ESTE FIN, SE INTRODUCEN EN EL CAPITULO UNO LAS TEORIAS DE TORSION, QUE SON UNA TECNICA GENERAL PARA ESTUDIAR ANILLOS LOCALMENTE. COMO CASO PARTICULAR DE LAS CONSTRUCCIONES HECHAS SE TIENE LA LOCALIZACION DE UN ANILLO EN UN IDEAL PRIMO, Y MAS EN GENERAL LA LOCALIZACION EN UNA FAMILIA DE IDEALES PRIMOS.
EL SEGUNDO CAPITULO SE DEDICA AL ESTUDIO DE LA INYECTIVIDAD Y A SU CARACTERIZACION LOCAL. EL CAPITULO TERCERO INTRODUCE TECNICAS PARA RELACIONAR EL LOCALIZADO R DE UN ANILLO -NOETHERIANO CON LOS DOMINIOS DE KRULL. SE INTRODUCEN LOS GRUPOS DE CLASES DE IDEALES RELATIVOS A , Y SE INTERPRETAN COMO UNA MEDIDA PARA VER CUANTO SE SEPARA R DE SER EL CAPITULO CUARTO ESTUDIA LA FORMA DE CONSEGUIR EJEMPLOS DE DOMINIOS DE KRULL. FINALMENTE SE ESTUDIA EL LOCALIZADO R , Y SE PRUEBA QUE EL RADICAL INDUCIDO POR EN R ES JUSTAMENTE EL RADICAL DE LOS SEMIARTINIANOS. COMO APLICACION SE TIENE QUE SI M ES UN IDEAL MAXIMAL EN UN ANILLO NOETHERIANO, ENTONCES SE VERIFICA UNA DE LAS DOS POSIBILIDADES SIGUIENTES: (1) CERO ES EL UNICO IDEAL PRIMO P TAL QUE MZP ES MINIMAL, O (2) EXISTEN INFINITOS IDEALES PRIMOS P VERIFICANDO ESTA CONDICION.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados