Ir al contenido

Documat


Sentiments Analysis of Covid-19 Vaccine Tweets Using Machine Learning and Vader Lexicon Method

  • Arya, Vishakha [2] ; Mishra, Amit Kumar [2] ; González-Briones, Alfonso [1] Árbol académico
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

    2. [2] School of Computing- Computer Science & Engineering, DIT University, Dehradun
  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 11, Nº. 4, 2022, págs. 507-518
  • Idioma: inglés
  • DOI: 10.14201/adcaij.27349
  • Enlaces
  • Resumen
    • The novel Coronavirus disease of 2019 (COVID-19) has subsequently named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have tormented the lives of millions of people worldwide. Effective and safe vaccination might curtail the pandemic. This study aims to apply the VADER lexicon, TextBlob and machine learning approach: to analyze and detect the ongoing sentiments during the affliction of the Covid-19 pandemic on Twitter, to understand public reaction worldwide towards vaccine and concerns about the effectiveness of the vaccine. Over 200000 tweets vaccine-related using hashtags #CovidVaccine #Vaccines #CornavirusVaccine were retrieved from 18 August 2020 to 20 July 2021. Data analysis conducted by VADER lexicon method to predict sentiments polarity, counts and sentiment distribution, TextBlob to determine the subjectivity and polarity, and also compared with two other models such as Random Forest (RF) and Logistic Regression (LR). The results determine sentiments that public have a positive stance towards a vaccine follows by neutral and negative. Machine learning classification models performed better than the VADER lexicon method on vaccine Tweets. It is anticipated this study aims to help the government in long run, to make policies and a better environment for people suffering from negative thoughts during the ongoing pandemic.

  • Referencias bibliográficas
    • Abd El-Jawad, M. H., Hodhod, R., & Omar, Y. M. (2018, December). Sentiment analysis of social media networks using machine learning. In...
    • Aldarwish, M. M., & Ahmad, H. F. (2017, March). Predicting depression levels using social media posts. In 2017 IEEE 13th international...
    • Arya, V., & Mishra, A. (2021). Machine learning approaches to mental stress detection: a review. Annals of Optimization Theory and Practice,...
    • Arya, V., Mishra, A. K. M., & González-Briones, A. (2022). Analysis of sentiments on the onset of COVID-19 using machine learning techniques.
    • Baheti, R., & Kinariwala, S. (2019). Detection and analysis of stress using machine learning techniques. Int. J. Eng. Adv. Technol, 9,...
    • Bania, R. K. (2020). COVID-19 public tweets sentiment analysis using TF-IDF and inductive learning models. INFOCOMP Journal of Computer Science,...
    • Bonta, V., & Janardhan, N. K. N. (2019). A comprehensive study on lexicon-based approaches for sentiment analysis. Asian Journal of Computer...
    • Brunier, A., & Drysdale, C. (2020). COVID-19 disrupting mental health services in most countries, WHO survey. World Heal Organ.
    • Cavazos-Rehg, P. A., Krauss, M. J., Sowles, S., Connolly, S., Rosas, C., Bharadwaj, M., & Bierut, L. J. (2016). A content analysis of...
    • Centre for Disease control and Prevention, 2021. Variants of the virus that causes COVID-19. National Center for Immunization and Respiratory...
    • Chancellor, S., & De Choudhury, M. (2020). Methods in predictive techniques for mental health status on social media: a critical review....
    • Cherian, S., Potdar, V., Jadhav, S., Yadav, P., Gupta, N., Das, M., … & Panda, S. Convergent evolution of SARS-CoV-2 spike mutations,...
    • Chilwal, B., & Mishra, A. K. (2021). Extraction of Depression Symptoms From Social Networks. The Smart Cyber Ecosystem for Sustainable...
    • Cho, G., Yim, J., Choi, Y., Ko, J., & Lee, S. H. (2019). Review of machine learning algorithms for diagnosing mental illness. Psychiatry...
    • Das, B., & Chakraborty, S. (2018). An improved text sentiment classification model using TF-IDF and next word negation. arXiv preprint...
    • Desai, M., & Mehta, M. A. (2016, April). Techniques for sentiment analysis of Twitter data: A comprehensive survey. In 2016 International...
    • Deshpande, M., & Rao, V. (2017, December). Depression detection using emotion artificial intelligence. In 2017 international conference...
    • Dubey, A. D. (2020). Twitter sentiment analysis during COVID-19 outbreak. Available at SSRN 3572023.
    • Gbashi, S., Adebo, O. A., Doorsamy, W., & Njobeh, P. B. (2021). Systematic delineation of media polarity on COVID-19 vaccines in Africa:...
    • Khan, H., Srivastav, A., & Mishra, A. K. (2020). Use of classification algorithms in health care. In Big Data Analytics and Intelligence:...
    • Khan, M., Rizvi, Z., Shaikh, M. Z., Kazmi, W., & Shaikh, A. (2014). Design and implementation of intelligent human stress monitoring system....
    • Nguyen, T., Phung, D., Dao, B., Venkatesh, S., & Berk, M. (2014). Affective and content analysis of online depression communities. IEEE...
    • Raichur, N., Lonakadi, N., & Mural, P. (2017). Detection of stress using image processing and machine learning techniques. International...
    • Ritchie, H., Mathieu, E., Rodés-Guirao, L., Appel, C., Giattino, C., Ortiz-Ospina, E., … & Roser, M. (2020). Coronavirus pandemic (COVID-19)....
    • Rana, M., Rehman, M. Z. U., & Jain, S. (2022, February). Comparative Study of Supervised Machine Learning Methods for Prediction of Heart...
    • Rathi, M., Malik, A., Varshney, D., Sharma, R., & Mendiratta, S. (2018, August). Sentiment analysis of tweets using machine learning approach....
    • Saladino, V., Algeri, D., & Auriemma, V. (2020). The psychological and social impact of Covid-19: new perspectives of well-being. Frontiers...
    • Shatte, A. B., Hutchinson, D. M., & Teague, S. J. (2019). Machine learning in mental health: a scoping review of methods and applications....
    • Subhani, A. R., Mumtaz, W., Saad, M. N. B. M., Kamel, N., & Malik, A. S. (2017). Machine learning framework for the detection of mental...
    • Terry, M. (2021). UPDATED comparing COVID-19 vaccines: timelines, types, and prices. BioSpace. April 23.
    • Troussas, C., Virvou, M., Espinosa, K. J., Llaguno, K., & Caro, J. (2013, July). Sentiment analysis of Facebook statuses using Naive Bayes...
    • World Economic Forum, 2020. https://www.weforum.org/agenda/2020/08/covid-19-coronavirus-mental-health-well-being-countries/
    • Yazdavar, A. H., Mahdavinejad, M. S., Bajaj, G., Thirunarayan, K., Pathak, J., & Sheth, A. (2018, June). Mental health analysis via social...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno