Ir al contenido

Documat


Analysis of Sentiments on the Onset of COVID-19 Using Machine Learning Techniques

  • Vishakha Arya [4] ; Amit Kumar Mishra [4] ; Alfonso González-Briones [1] [2] [3] Árbol académico
    1. [1] Universidad Complutense de Madrid

      Universidad Complutense de Madrid

      Madrid, España

    2. [2] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

    3. [3] AIR Institute

      AIR Institute

      Carbajosa de la Sagrada, España

    4. [4] School of Computing, DIT University
  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 11, Nº. 1, 2022, págs. 45-63
  • Idioma: inglés
  • DOI: 10.14201/adcaij.27348
  • Enlaces
  • Resumen
    • The novel coronavirus (COVID-19) pandemic has struck the whole world and is one of the most striking topics on social media platforms. Sentiment outbreak on social media enduring various thoughts, opinions, and emotions about the COVID-19 disease, expressing views they are feeling presently. Analyzing sentiments helps to yield better results. Gathering data from different blogging sites like Facebook, Twitter, Weibo, YouTube, Instagram, etc., and Twitter is the largest repository. Videos, text, and audio were also collected from repositories. Sentiment analysis uses opinion mining to acquire the sentiments of its users and categorizes them accordingly as positive, negative, and neutral. Analytical and machine learning classification is implemented to 3586 tweets collected in different time frames. In this paper, sentiment analysis was performed on tweets accumulated during the COVID-19 pandemic, Coronavirus disease. Tweets are collected from the Twitter database using Hydrator a web-based application. Data-preprocessing removes all the noise, outliers from the raw data. With Natural Language Toolkit (NLTK), text classification for sentiment analysis and calculate the score subjective polarity, counts, and sentiment distribution. N-gram is used in textual mining -and Natural Language Processing for a continuous sequence of words in a text or document applying uni-gram, bi-gram, and tri-gram for statistical computation. Term frequency and Inverse document frequency (TF-IDF) is a feature extraction technique that converts textual data into numeric form. Vectorize data feed to our model to obtain insights from linguistic data. Linear SVC, MultinomialNB, GBM, and Random Forest classifier with Tfidf classification model applied to our proposed model. Linear Support Vector classification performs better than the other two classifiers. Results depict that RF performs better

  • Referencias bibliográficas
    • Ahuja, R., and Banga, A., 2019. Mental Stress Detection in University Students using Machine Learning Algorithms, 152. 349-353. Procedia Computer...
    • Alamoodi A. H., Zaidan B. B., Zaidan A. A., Albahri O. S., Mohammed K. I., Malik R. Q., Almahdi E. M., Chyad M. A., Tareq Z., Albahri A. S,...
    • Aldarwish, M. M., and Ahmad, H. F., 2017. Predicting Depression Levels Using Social Media Posts, 277-280. IEEE 13th International Symposium...
    • Baheti, R. R., and Kinariwala, S., 2019. Detection and Analysis of Stress using Machine Learning Techniques. International Journal of Engineering...
    • Bania, R. K., 2020. COVID-19 Public Tweets Sentiment Analysis using TF-IDF and Inductive Learning Models, 19(2), 23–41. INFOCOMP Journal of...
    • Calderon-Vilca, H. D., Wun-Rafael, W. I., and Miranda-Loarte, R., 2018. Simulation of suicide tendency by using machine learning: 1-6. 36th...
    • Cavazos-Rehg, P. A., Krauss, M. J., Sowles, S., Connolly, S., Rosas, C., Bharadwaj, M., and Bierut, L. J., 2016. A content analysis of depression-related...
    • Chancellor, S., and De Choudhury, M., 2020. Methods in predictive techniques for mental health status on social media: a critical review,...
    • Cho, G., Yim, J., Choi, Y., Ko, J., and Lee, S. H., 2019. Review of Machine Learning Algorithms for Diagnosing Mental Illness. .16(4), 262-269....
    • Das, B., and Chakraborty, S., 2018. An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation. ArXiv.
    • Desai, M., and Mehta, M. A., 2016. Techniques for sentiment analysis of Twitter data: A comprehensive survey, 149-154. International Conference...
    • Deshpande, M., and Rao, V., 2017. Depression detection using emotion artificial intelligence, 858-862. International Conference on Intelligent...
    • Dubey A., 2020. Twitter Sentiment Analysis during COVID-19 Outbreak. SSRN Electronic Journal.
    • Jawad, A., Hodhod, R. A., and Omar, Y. M., 2018. Sentiment Analysis of Social Media Networks Using Machine Learning, 174-176. International...
    • Ghaderi, A.. Frounchi, J., and Farnam, A., 2015. Machine learning-based signal processing using physiological signals for stress detection:...
    • Hatton, C. M., Paton, L. W., McMillan, D., Cussens, J., Gilbody, S., and Tiffin, P. A., 2019. Predicting persistent depressive symptoms in...
    • Hussain, J., Ali, M., Bilal, H. S. M., Afzal, M., Ahmad, H. F., Banos, O., and Lee, S., 2015. SNS Based Predictive Model for Depression, 349–354....
    • Kemp, S., 2021. Global Overview Report.
    • Khan, M., Rizvi, Z., Shaikh, M. Z., Kazmi, W., and Shaikh, A., 2014. Design and Implementation of Intelligent Human Stress Monitoring System,...
    • Lech, M., 2018. Detection of Adolescent Depression from Speech Using Optimized Spectral Roll-Off Parameters. Biomedical Journal of Scientific...
    • Nguyen, T., Phung, D., Dao, B., Venkatesh, S., and Berk, M., 2014. Affective and Content Analysis of Online Depression Communities, (5/3),...
    • Pranckevicius, T., and Marcinkevicius, V., 2017. Comparison of Naive Bayes, Random Forest, Decision Tree, Support Vector Machines, and Logistic...
    • Ramalingam, D., Sharma, V., and Zar, P., 2019. Study of Depression Analysis using Machine Learning Techniques, 8, 7C2: 2278-3075. International...
    • Rathi, M., Malik, A., Varshney, D., Sharma, R., and Mendiratta, S., 2018. Sentiment Analysis of Tweets Using Machine Learning Approach, 1-3....
    • Raichur, N., Lonakadi, N., and Mural, P., 2017. Detection of Stress Using Image Processing and Machine Learning Techniques, 9, 1-8. International...
    • Samuel, J., Ali, G.G.M.N., Rahman, M.M., Esawi, E., and Samuel, Y., 2020. COVID-19 Public Sentiment Insights and Machine Learning for Tweets...
    • Shatte A., Hutchinson D.M., and Teague S.J., 2019. Machine learning in mental health: a scoping review of methods and applications, 49(9):1426-1448....
    • Stolar M, N., Lech, M., Stolar S.J., and Allen N.B., 2018. Detection of Adolescent Depression from Speech Using Optimised Spectral Roll-Off...
    • Subhani, A. R., Mumtaz, W., Saad, M. N. B. M., Kamel, N., and Malik, A. S., 2017. Machine Learning Framework for the Detection of Mental Stress...
    • Tate, A. E., McCabe, R. C., Larsson, H., Lundström, S., Lichtenstein, P., and Kuja-Halkola, R., 2020. Predicting mental health problems in...
    • Troussas, C., Virvou, M., Espinosa, K. J., Llaguno, K., and Caro, J., 2013. Sentiment analysis of Facebook statuses using Naive Bayes Classifier...
    • Vuppalapati, C., Khan, M. S., Raghu, N., Veluru, P., and Khursheed, S., 2018. A System to Detect Mental Stress Using Machine Learning and...
    • World Health Organization, 2021. Depression is a mental disorder.
    • Worldometers, 2020 - https://www.worldometers.info/coronavirus/
    • Yazdavar, A. H., Mahdavinejad, M. S., Bajaj, G., Thirunarayan, K., Pathak, J., and Sheth, A., 2018. Mental Health Analysis Via social media...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno