Ir al contenido

Documat


Finite semisimple module 2-categories

  • Thibault D. Décoppet [1]
    1. [1] Harvard University

      Harvard University

      City of Cambridge, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00998-4
  • Enlaces
  • Resumen
    • Let C be a multifusion 2-category. We show that every finite semisimple C-module 2-category is canonically enriched over C. Using this enrichment, we prove that every finite semisimple C-module 2-category is equivalent to the 2-category of modules over a rigid algebra in C.

  • Referencias bibliográficas
    • 1. Baez, J.C., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36(11), 6073–6105 (1995). https://doi.org/10.1063/1.531236
    • 2. Bartlett, B., Douglas, C.L., Schommer-Pries, C.J., Vicary, J.: Extended 3-dimensional bordism as the theory of modular objects (2014)....
    • 3. Brochier, A., Jordan, D., Snyder, N.: On dualizability of braided tensor categories. Compos. Math. 3, 435–483 (2021)
    • 4. Brochier, A., Jordan, D., Safronov, P., Snyder, N.: Invertible braided tensor categories. Algebr. Geom. Topol. 21(4), 2107–2140 (2021)
    • 5. Le Creurer, I.J., Marmolejo, F., Vitale, E.M.: Beck’s theorem for pseudo-monads. J. Pure Appl. Algebra 173(3), 293–313 (2002). https://doi.org/10.1016/S0022-4049(02)00038-5
    • 6. Décoppet, T.D.: Separable fusion 2-categories. In preparation
    • 7. Décoppet, T.D.: Multifusion categories and finite semisimple 2-categories. J. Pure Appl. Algebra 226(8), 107029 (2022)
    • 8. Décoppet, T.D.: Weak fusion 2-categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, LXIII(1):3–24 (2022). arXiv:2103.15150
    • 9. Décoppet, T.D.: Compact semisimple 2-categories. Trans. Am. Math. Soc. 376(12), 8309–8336 (2023)
    • 10. Décoppet, T.D.: The 2-Deligne tensor product. Kyoto J. Math. 64(1), 1–29 (2024)
    • 11. Davidov, A., Nikshych, D.: Braided Picard groups and graded extensions of braided tensor categories. Sel. Math. 27, 65 (2022)
    • 12. Douglas, C.L., Reutter, D.J.: Fusion 2-categories and a state-sum invariant for 4-manifolds (2018). arXiv: 1812.11933
    • 13. Day, B., Street, R.: Monoidal bicategories and Hopf algebroids. Adv. Math. 129(1), 99–157 (1997)
    • 14. Douglas, C.L., Schommer-Pries, C., Snyder, N.: The balanced tensor product of module categories. Kyoto J. Math. 59, 167–179 (2019). arXiv:...
    • 15. Douglas, C.L., Schommer-Pries, C., Snyder, N.: Dualizable tensor categories. Mem. Am. Math. Soc, AMS (2021). arXiv: 1312.7188
    • 16. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Mathematical Surveys and Monographs, 205. American Mathematical...
    • 17. Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162, 581–642 (2005). arXiv: math/0203060
    • 18. Galindo, C.: Coherence for monoidal G-categories and braided G-crossed categories. J. Algebra 487, 118–137 (2017)
    • 19. Gaiotto, D., Johnson-Freyd, T.: Condensations in higher categories (2019). arXiv: 1905.09566v2
    • 20. Garner, R., Schulman, M.: Enriched categories as a free cocompletion. Adv. Math. 289, 1–94 (2016)
    • 21. Gurski, N: Biequivalence in tricategories. Theory Appl. Categ. 26 (2012)
    • 22. Gurski, N.: Coherence in Three-Dimensional Category Theory. Cambridge Tracts in Mathematics, 201. Cambridge University Press, Cambridge,...
    • 23. Johnson-Freyd, T.: On the classification of topological orders. Commun. Math. Phys. 393, 989–1033 (2020)
    • 24. Johnson-Freyd, T., Reutter, D.J.: Minimal non-degenerate extensions. J. Am. Math. Soc. 37, 81–15 (2024). arXiv:2105.15167
    • 25. Johnson-Freyd, T., Yu, M.: Fusion 2-categories with no line operators are grouplike. Bull. Aust. Math. Soc. 104(3), 434–442 (2021)
    • 26. Jones, C., Morrison, S., Penneys, D., Plavnik, J.: Extension theory for braided-enriched fusion categoriess. Int. Math. Res. Not. (2021)....
    • 27. Kong, L., Tian, Y., Zhou, S.: The center of monoidal 2-categories in 3+1d Dijkgraaf-Witten theory. Adv. Math. 360, 106928 (2020)
    • 28. Kong, L., Zheng, H.: Categories of quantum liquids II. Commun. Math. Phys. 405, 203 (2024). arXiv:2107.03858
    • 29. Kong, L., Zheng, H.: Categories of quantum liquids I. J. High Energ. Phys. 2022, 70 (2022). arXiv:2011.02859
    • 30. Lurie, J.: On the classification of topological field theories. Curr. Dev. Math. Sci. 1, 129–280 (2010)
    • 31. Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8, 177–206 (2003). arXiv:math/0111139
    • 32. Pstragowski, P.: On dualizable objects in monoidal bicategories, framed surfaces and the cobordism hypothesis (2014). arXiv: 1411.6691
    • 33. Schommer-Pries, C.J.: The classification of two-dimensional extended topological field theories. PhD thesis, UC Berkeley (2011). arXiv:...
    • 34. Turaev, V.: Homotopy field theory in dimension 3 and crossed group-categories (2000). arXiv:math/0005291

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno