Ir al contenido

Documat


On fusion categories

  • Autores: Pavel Etingof, Victor Ostrik, Dimitri Nickshych
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 162, Nº 2, 2005, págs. 581-642
  • Idioma: inglés
  • DOI: 10.4007/annals.2005.162.581
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Using a variety of methods developed in the literature (in particular, the theory of weak Hopf algebras), we prove a number of general results about fusion categories in characteristic zero. We show that the global dimension of a fusion category is always positive, and that the S-matrix of any (not necessarily hermitian) modular category is unitary. We also show that the category of module functors between two module categories over a fusion category is semisimple, and that fusion categories and tensor functors between them are undeformable (generalized Ocneanu rigidity). In particular the number of such categories (functors) realizing a given fusion datum is finite. Finally, we develop the theory of Frobenius-Perron dimensions in an arbitrary fusion category. At the end of the paper we generalize some of these results to positive characteristic.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno