Ir al contenido

Documat


The Cuntz semigroup of a ring

  • Ramon Antoine [1] Árbol académico ; Pere Ara [1] Árbol académico ; Joan Bosa [2] ; Francesc Perera [1] Árbol académico ; Eduard Vilalta [3]
    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

    2. [2] Universidad de Zaragoza

      Universidad de Zaragoza

      Zaragoza, España

    3. [3] Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-01002-9
  • Enlaces
  • Resumen
    • For any ring R, we introduce an invariant in the form of a partially ordered abelian semigroup S(R) built from an equivalence relation on the class of countably generated projective modules. We call S(R)the Cuntz semigroup of the ring R. This construction is akin to the manufacture of the Cuntz semigroup of a C*-algebra using countably generated Hilbert modules. To circumvent the lack of a topology in a general ring R, we deepen our understanding of countably projective modules over R, thus uncovering new features in their direct limit decompositions, which in turn yields two equivalent descriptions of S(R). The Cuntz semigroup of R is part of a new invariant SCu(R) which includes an ambient semigroup in the category of abstract Cuntz semigroups that provides additional information. We provide computations for both S(R) and SCu(R) in a number of interesting situations, such as unit-regular rings, semilocal rings, and in the context of nearly simple domains. We also relate our construcion to the Cuntz semigroup of a C*-algebra.

  • Referencias bibliográficas
    • 1. Antoine, R., Ara, P., Bosa, J., Perera, F., Vilalta, E.: Ideals, quotients, and continuity of the Cuntz semigroup for rings. Preprint arXiv:2411.00507v1...
    • 2. Antoine, R., Bosa, J., Perera, F.: Completions of monoids with applications to the Cuntz semigroup. Int. J. Math. 22(6), 837–861 (2011)
    • 3. Antoine, R., Perera, F., Thiel, H.: Tensor products and regularity properties of Cuntz semigroups. Mem. Am. Math. Soc. 251(1199), viii+191...
    • 4. Ara, P.: Rings without identity which are Morita equivalent to regular rings. Algebra Colloq. 11(4), 533–540 (2004)
    • 5. Ara, P., Goodearl, K.R., O’Meara, K.C., Raphael, R.: K1 of separative exchange rings and C∗-algebras with real rank zero. Pac. J. Math....
    • 6. Ara, P., Goodearl, K.R., Pardo, E.: K0 of purely infinite simple regular rings. K-Theory 26(1), 69–100 (2002)
    • 7. Ara, P., Pardo, E., Perera, F.: The structure of countably generated projective modules over regular rings. J. Algebra 226(1), 161–190...
    • 8. Ara, P., Perera, F., Toms, A.: K-theory for operator algebras. Classification of C∗-algebras. In: Aspects of Operator Algebras and Applications,...
    • 9. Aranda Pino, G., Goodearl, K.R., Perera, F., Siles Molina, M.: Non-simple purely infinite rings. Am. J. Math. 132(3), 563–610 (2010)
    • 10. Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29(2), 178–218 (1978)
    • 11. Brown, L.G., Lin, H.: Projective Hilbert modules and sequential approximations. Sci. China Math. (2024). https://doi.org/10.1007/s11425-023-2194-x
    • 12. Brown, N.P., Ciuperca, A.: Isomorphism of Hilbert modules over stably finite C∗-algebras. J. Funct. Anal. 257(1), 332–339 (2009)
    • 13. Cohn, P.M.: On n-simple rings. Algebra Univers. 53(2–3), 301–305 (2005)
    • 14. Coward, K., Elliott, G., Ivanescu, C.: The Cuntz semigroup as an invariant for C∗-algebras. J. Reine Angew. Math. 623, 161–193 (2008)
    • 15. Cuntz, J.: Dimension functions on simple C*-algebras. Math. Ann. 233(2), 145–153 (1978)
    • 16. Facchini, A.: Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Progress in Mathematics, vol....
    • 17. Facchini, A., Herbera, D.: K0 of a semilocal ring. J. Algebra 255, 47–69 (2000)
    • 18. Facchini, A., Herbera, D., Sakhajev, I.: Flat modules and lifting of finitely generated projective modules. Pac. J. Math. 220(1), 49–67...
    • 19. Gardella, E., Perera, F.: The modern theory of Cuntz semigroups of C*-algebras. EMS Surv. Math. Sci. (2024), published online first. https://doi.org/10.4171/EMSS/84
    • 20. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains, Encyclopedia of Mathematics...
    • 21. Goodearl, K.R.: von Neumann Regular Rings, 2nd edn. Robert E. Krieger Publishing Co., Inc, Malabar (1991)
    • 22. Goodearl, K.R.: Leavitt path algebras and direct limits. In: Rings, Modules and Representations, Contemporary Mathematics, vol. 480, pp....
    • 23. Herbera, D., Pˇríhoda, P.: Big projective modules over noetherian semilocal rings. J. Reine Angew. Math. 648, 111–148 (2010)
    • 24. Herbera, D., Pˇríhoda, P.: Infinitely generated projective modules over pullbacks of rings. Trans. Am. Math. Soc. 366(3), 1433–1454 (2014)
    • 25. Herbera, D., Pˇríhoda, P.: Reconstructing projective modules from its trace ideal. J. Algebra 416, 25–57 (2014)
    • 26. Hung, T.F., Li, H.: Malcolmson semigroups. J. Algebra 623, 193–233 (2023)
    • 27. Kasparov, G.G.: Hilbert C*-modules: theorems of Stinespring and Voiculescu. J. Oper. Theory 4(1), 133–150 (1980)
    • 28. Lam, T.Y.: Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 199. Springer (1999)
    • 29. Manuilov, V.M., Troitsky, E.V.: Hilbert C∗-Modules, Translations of Mathematical Monographs, vol. 226. American Mathematical Society,...
    • 30. Nazemian, Z., Smertnig, D.: A monoid theoretical approach to infinite direct-sum decompositions of modules. Preprint arXiv:2401.08203...
    • 31. McGovern, W., Puninski, G., Rothmaler, P.: When every projective module is a direct sum of finitely generated modules. J. Algebra 315,...
    • 32. Perera, F.: The structure of positive elements for C∗-algebras with real rank zero. Int. J. Math. 8(3), 383–405 (1997)
    • 33. Pˇríhoda, P.: Projective modules are determined by their radical factors. J. Pure Appl. Algebra 210, 827–835 (2007)
    • 34. Puninski, G.: Some model theory over a nearly simple uniserial domain and decompositions of serial modules. J. Pure Appl. Algebra 163(3),...
    • 35. Thiel, H., Vilalta, E.: Covering dimension of Cuntz semigroups II. Int. J. Math. 32, 2150100 (2021)
    • 36. Thiel, H., Vilalta, E.: Covering dimension of Cuntz semigroups. Adv. Math. 394, 108016 (2022)
    • 37. Toms, A.S.: On the classification problem for nuclear C∗-algebras. Ann. Math. (2) 167(3), 1029–1044 (2008)
    • 38. Wehrung, F.: Monoids of intervals of ordered abelian groups. J. Algebra 182(1), 287–328 (1996)
    • 39. Whitehead, J.M.: Projective modules and their trace ideals. Commun. Algebra 8(19), 1873–1901 (1980)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno