Ir al contenido

Documat


Multi-level loop equations for β-corners processes

  • Evgeni Dimitrov [1] ; Alisa Knizel [2]
    1. [1] Department of Mathematics, USC, USA
    2. [2] Department of Mathematics, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-01006-5
  • Enlaces
  • Resumen
    • The goal of the paper is to introduce a new set of tools for the study of discrete and continuous β-corners processes. In the continuous setting, our work provides a multilevel extension of the loop equations (also called Schwinger–Dyson equations) for β-log gases obtained by Borot and Guionnet in (Commun. Math. Phys. 317, 447– 483, 2013). In the discrete setting, our work provides a multi-level extension of the loop equations (also called Nekrasov equations) for discrete β-ensembles obtained by Borodin, Gorin and Guionnet in (Publications mathématiques de l’IHÉS 125, 1–78, 2017).

  • Referencias bibliográficas
    • 1. Anderson, G.W.: A short proof of Selberg’s generalized beta formula. Forum Math. 3, 415–417 (1991)
    • 2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An introduction to random matrices. Cambridge University Press, Cambridge, London (2010)
    • 3. Bekerman, F., Figalli, A., Guionnet, A.: Transport maps for β-matrix models and universality. Comm. Math. Phys. 338, 589–619 (2015)
    • 4. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225–400 (2014)
    • 5. Borodin, A., Gorin, V., Guionnet, A.: Gaussian asymptotics of discrete β-ensembles. Publications mathématiques de l’IHÉS 125, 1–78 (2017)
    • 6. Borot, G., Guionnet, A.: Asymptotic expansion of β matrix models in the one-cut regime. Commun. Math. Phys. 317, 447–483 (2013)
    • 7. Borot, G., Guionnet, A.: Asymptotic expansion of β matrix models in the multi-cut regime. Forum Math. Sigma 12, e13 (2024)
    • 8. Bourgade, P., Erd ˝os, L., Yau, H.T.: Edge universality of beta ensembles. Comm. Math. Phys. 332, 261–353 (2014)
    • 9. Bufetov, A., Gorin, V.: Fluctuations of particle systems determined by Schur generating functions. Adv. Math. 338, 702–781 (2018)
    • 10. Dimitrov, E., Knizel, A.: Asymptotics of discrete β-corners processes via two-level discrete loop equations. Probab. Math. Phys. 3(2),...
    • 11. Dimitrov, E., Knizel, A.: Global asymptotics for β-Krawtchouk corners processes via multi-level loop equations, (2024), arXiv:2403.17895
    • 12. Dixon, A.L.: Generalizations of Legendre’s formula ke − (k − e)k = 1 2 π. Proc. London Math. Soc.2, 206–224 (1905)
    • 13. Forrester, P., Warnaar, S..V..E..N.: The importance of the Selberg integral. Bull. Amer. Math. Soc. 4, 489–534 (2008)
    • 14. Forrester, P.J.: Log-gases and random matrices. Princeton University Press, Princeton (2010)
    • 15. Gorin, V., Huang, J.: Dynamical Loop Equations, (2022), arXiv:2205.15785v1
    • 16. Gorin, V., Shkolnikov, M.: Multilevel Dyson Brownian motions via Jack polynomials. Probab. Theory Relat. Fields 163, 413–463 (2015)
    • 17. Guionnet, A., Huang, J.: Rigidity and edge universality of discrete β-ensembles. Comm. Pure Appl. Math. 72(9), 1875–1982 (2019)
    • 18. Huang,J.: Height fluctuations of random lozenge tilings through nonintersecting random walks, (2020), Preprint arXiv:2011.01751
    • 19. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91, 151– 204 (1998)
    • 20. Kriecherbauer, T., Shcherbina,M.: Fluctuations of eigenvalues of matrix models and their applications, (2010), Preprint, arXiv:1003.6121
    • 21. Macdonald, I.G.: Symmetric functions and Hall polynomials, 2nd edn. Oxford University Press Inc., New York, USA (1995)
    • 22. Najnudel, J., Virág, B.: The bead process for beta ensembles. Probab. Theory Relat. Fields 179, 589–647 (2021)
    • 23. Nekrasov, N.: BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and qqcharacters. J. High Energy Phys. 3, 181 (2016)
    • 24. Nekrasov, N., Tsymbaliuk, A.: Surface defects in gauge theory and KZ equation. Lett. Math. Phys. 112(2), 28 (2022)
    • 25. Peccati, G., Taqqu, M.: Wiener Chaos: Moments, Cumulants and Diagrams. Springer-Verlag Italia, Italy (2011)
    • 26. Royden, H.L.: Real analysis, 3rd edn. Macmillan Publishing Company, New York, NY, USA (1988)
    • 27. Rudin, W.: Principles of mathematical analsyis, 3rd edn. McGraw-hill, New York, USA (1964)
    • 28. Shcherbina, M.: Fluctuations of linear eigenvalue statistics of β matrix models in the multi-cut regime. J. Stat. Phys. 151, 1004–1034...
    • 29. Stein, E., Shakarchi, R.: Complex analysis. Princeton University Press, Princeton (2003)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno