Ir al contenido

Documat


An interesting wall-crossing: failure of the wall-crossing/MMP correspondence

  • Fatemeh Rezaee [1]
    1. [1] University of Edinburgh

      University of Edinburgh

      Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00985-9
  • Enlaces
  • Resumen
    • We introduce a novel wall-crossing phenomenon in the space of Bridgeland stability conditions: a wall in the stability space of canonical genus 4 curves that induces non-Q-factorial singularities and hence, it cannot be detected as an operation in the Minimal Model Program of the corresponding moduli space, unlike the case for many surfaces. More precisely, we give an example of a wall-crossing in Db(P3) such that the wall induces a small contraction of the moduli space of stable objects associated to one of the adjacent chambers, but a divisorial contraction to the other. This significantly complicates the overall picture in this correspondence to applications of stability conditions to algebraic geometry. The full wall-crossing for canonical genus four curves and the geometry are considered in the published paper (Rezaee in Proc LMS 128(1):e12577, 2024); this article is devoted to describe a particularly interesting wall among the walls in Rezaee (Proc LMS 128(1):e12577, 2024) in full details to explain the novel phenomenon.

  • Referencias bibliográficas
    • 1. Alper, J., Halpern-Leistner, D., Heinloth, J.: Existence of moduli spaces for algebraic stacks. Invent. Math. 234(3), 949–1038 (2023)
    • 2. Arcara, D., Bertram, A., Coskun, I., Huizenga, J.: The minimal model program for the Hilbert scheme of points on P2 and Bridgeland stability....
    • 3. Bayer, A., Macrì, E.: MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones Lagrangian fibrations. Invent. Math. 198(3),...
    • 4. Bayer, A., Macrì, E.: Projectivity and birational geometry of Bridgeland moduli spaces. J. Amer. Math. Soc. 27(3), 707–752 (2014)
    • 5. Bayer, A., Macrì, E., Stellari, P.: The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds. Invent....
    • 6. Bayer, A., Macrì, E., Toda, Y.: Bridgeland stability conditions on threefolds I: Bogomolov–Gieseker type inequalities. J. Algebraic Geom....
    • 7. Beckmann, T.: Birational geometry of moduli spaces of stable objects on enriques surfaces. Sel. Math. New Ser. 26(14), 1–18 (2020)
    • 8. Bertram, A., Coskun, I.: The birational geometry of the Hilbert scheme of points on surfaces birational geometry, rational curves, and...
    • 9. Bertram, A., Martinez, C., Wang, J.: The birational geometry of moduli spaces of sheaves on the projective plane. Geom. Dedicata 173, 37–64...
    • 10. Bolognese, B., Huizenga, J., Lin, Y., Riedl, E., Schmidt, B., Woolf, M., Zhao, X.: Nef cones of Hilbert schemes of points on surfaces....
    • 11. Bridgeland, T.: Stability conditions on K3 surfaces. Duke Math. J. 141(2), 241–291 (2008)
    • 12. Coskun, I., Huizenga, J.: The ample cone of moduli spaces of sheaves on the plane. Algebr. Geom. 3(1), 106–136 (2016)
    • 13. Fulger, M., Lehmann, B.: Positive cones of dual cycle classes. Algebr. Geom. 4(1), 1–28 (2017)
    • 14. Gallardo, P., Lozano Huerta, C., Schmidt, B.: On the Hilbert scheme of elliptic quartics. Michigan Math. J. 67(4), 787–813 (2018)
    • 15. Grayson, D., Stillman, M.: Macaulay2. a software system for research in algebraic geometry, http:// www.math.uiuc.edu/Macaulay2/
    • 16. Huybrechts, D.: Fourier–Mukai Transforms in Algebraic Geometry. Oxford University Press, Oxford (2006)
    • 17. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge University Press, Cambridge (1998)
    • 18. Li, C., Zhao, X.: The MMP for deformations of Hilbert schemes of points on the projective plane. Algebr. Geom. 5(3), 328–358 (2018)
    • 19. Maciocia, A.: Computing the walls associated to Bridgeland stability conditions on projective surfaces. Asian J. Math. 18(2), 263–279...
    • 20. Maciocia, A., Meachan, C.: Rank 1 bridgeland stable moduli spaces on a principally polarized abelian surface. Int. Math. Res. Not. IMRN...
    • 21. Macrì, E.: Generalized Bogomolov–Gieseker inequality for the three-dimensional projective space. Algebra Number Theory 8(1), 173–190 (2014)
    • 22. Macrì, E., Schmidt, B.: Derived categories and the genus of space curves. Algebr. Geom. 7(2), 153–191 (2020)
    • 23. Macrì, E., Schmidt, B.: Lectures on Bridgeland stability. In: Lect. Notes Unione Mat. Ital., 21:139–211, Springer, Cham, (2017)
    • 24. Moishezon, B.: On n-dimensional compact complex varieties with n algebraic independent meromorphic functions. Transl. Am. Math. Soc 63,...
    • 25. Neur, H., Yoshioka, K.: MMP via wall-crossing for Bridgeland moduli spaces on an Enriques surface. Advances in Mathematics, 372, (2020)
    • 26. Rezaee, F.: Geometry of canonical genus 4 curves. Proc. LMS 128(1), e12577 (2024)
    • 27. Schmidt, B.: Bridgeland stability on threefolds–First wall crossings. J. Algebraic Geom. 29(2), 247– 283 (2020)
    • 28. Schmidt, B.: Rank two sheaves with maximal third Chern character in three-dimensional projective space. Matemática Contemporânea 47, 228–270...
    • 29. Toda, Y.: Stability conditions and extremal contractions. Math. Ann. 357, 631–685 (2013)
    • 30. Toda, Y.: Stability conditions and birational geometry of projective surfaces. Compositio Mathematica 150, 1755–1788 (2014)
    • 31. Tramel, R., Xia, B.: Bridgeland stability conditions on surfaces with curves of negative self-intersection. Adv. Geom. 22(3), 383–408...
    • 32. Xia, B.: Hilbert scheme of twisted cubics as a simple wall-crossing. Trans. Amer. Soc. Math. 370(8), 5535–5559 (2018)
    • 33. Yanagida, S., Yoshioka, K.: Bridgeland’s stabilities on abelian surfaces. Math. Z. 276(1–2), 571–610 (2014)
    • 34. Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321, 817–884 (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno