Ir al contenido

Documat


Birational geometry of moduli spaces of stable objects on Enriques surfaces

  • Thorsten Beckmann [1]
    1. [1] Universitãt Bonn, Alemania
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 26, Nº. 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s00029-020-0540-5
  • Enlaces
  • Resumen
    • Using wall-crossing for K3 surfaces, we establish birational equivalence of moduli spaces of stable objects on generic Enriques surfaces for different stability conditions. As an application, we prove in the case of a Mukai vector of odd rank that they are birational to Hilbert schemes. The argument makes use of a new Chow-theoretic result, showing that moduli spaces on an Enriques surface give rise to constant cycle subvarieties of the moduli spaces of the covering K3.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno